Inhibition of transforming growth factor beta/SMAD signal by MiR-155 is involved in arsenic trioxide-induced anti-angiogenesis in prostate cancer
نویسندگان
چکیده
Prostate cancer is the most common cause of cancer-related deaths in men. Current practices for treatment of prostate cancer are less than satisfactory because of metastasis and recurrence, which are primarily attributed to angiogenesis. Hence, anti-angiogenesis treatment is becoming a promising new approach for prostate cancer therapy. In addition to treating acute promyelocytic leukemia, arsenic trioxide (As2 O3 ) suppresses other solid tumors, including prostate cancer. However, the effects of As2 O3 on angiogenesis in prostate cancer cells, and the underlying molecular mechanisms remain unclear. In the present study, As2 O3 attenuated angiogenic ability through microRNA-155 (miR-155)-mediated inhibition of transforming growth factor beta (TGF-β)/SMAD signal pathway in human prostate cancer PC-3 and LNCaP cells in vitro and in vivo. Briefly, As2 O3 inhibited the activations/expressions of both TGFβ-induced and endogenous SMAD2/3. Furthermore, As2 O3 improved the expression of miR-155 via DNA-demethylation. MiR-155, which targeted the SMAD2-3'UTR, decreased the expression and function of SMAD2. Knockdown of miR-155 abolished the As2 O3 -induced inhibitions of the TGF-β/SMAD2 signaling, the vascular endothelial growth factor secretion and angiogenesis. Through understanding a novel mechanism whereby As2 O3 inhibits angiogenic potential of prostate cancer cells, our study would help in the development of As2 O3 as a potential chemopreventive agent when used alone or in combination with other current anticancer drugs.
منابع مشابه
Inhibition of the cancer stem cells-like properties by arsenic trioxide, involved in the attenuation of endogenous transforming growth factor beta signal.
The elevation of cancer stem cells (CSCs)-like properties is involved in the initiation and progression of various human cancers. Current standard practices for treatment of cancers are less than satisfactory because of CSCs-mediated recurrence. For this reason, targeting the CSCs or the cancer cells with CSCs-like properties has become the new approach for the cancer treatments. In addition to...
متن کاملThe transforming growth factor beta 1/SMAD signaling pathway involved in human chronic myeloid leukemia.
Transforming growth factor beta 1 (TGF-beta1) is the prototypic member of a large family of structurally related pleiotropic-secreted cytokines. The TGF-beta1/SMAD signaling pathway usually participates in a wide range of cellular processes such as growth, proliferation, differentiation and apoptosis. Upon binding on TGF-beta1, the dimerized TGF-beta type II receptors recruit and phosphorylate ...
متن کاملMicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA.
Transforming growth factor beta (TGF-beta) signaling facilitates metastasis in advanced malignancy. While a number of protein-encoding genes are known to be involved in this process, information on the role of microRNAs (miRNAs) in TGF-beta-induced cell migration and invasion is still limited. By hybridizing a 515-miRNA oligonucleotide-based microarray library, a total of 28 miRNAs were found t...
متن کاملThe Repressive Effect of miR-148a on TGF beta-SMADs Signal Pathway Is Involved in the Glabridin-Induced Inhibition of the Cancer Stem Cells-Like Properties in Hepatocellular Carcinoma Cells
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Current standard practices for treatment of HCC are less than satisfactory because of cancer stem cells (CSCs)-mediated post-surgical recurrence. For this reason, targeting the CSCs or the cancer cells with CSCs-like properties has become a new approach for the treatment of HCC. GLA exhibits anti-tu...
متن کاملEmodin inhibits angiogenesis in pancreatic cancer by regulating the transforming growth factor-β/drosophila mothers against decapentaplegic pathway and angiogenesis-associated microRNAs.
Emodin is a traditional Chinese medicine, which has been demonstrated to inhibit the growth of pancreatic cancer cells. However, the underlying molecular mechanisms remain to be elucidated. The present study investigated whether emodin suppresses angiogenesis in pancreatic cancer. A nude mouse pancreatic cancer xenograft model was established using SW1990 human pancreatic cancer cells by surgic...
متن کامل