Transductive Zero-Shot Learning with Adaptive Structural Embedding

نویسندگان

  • Yunlong Yu
  • Zhong Ji
  • Jichang Guo
  • Yanwei Pang
چکیده

Zero-shot learning (ZSL) endows the computer vision system with the inferential capability to recognize new categories that have never seen before. Two fundamental challenges in it are visual-semantic embedding and domain adaptation in cross-modality learning and unseen class prediction steps, respectively. This paper presents two corresponding methods named Adaptive STructural Embedding (ASTE) and Self-PAced Selective Strategy (SPASS) for both challenges. Specifically, ASTE formulates the visual-semantic interactions in a latent structural support vector machine framework by adaptively adjusting the slack variables to embody different reliablenesses among training instances. To alleviate the domain shift problem in ZSL, SPASS borrows the idea from self-paced learning by iteratively selecting the unseen instances from reliable to less reliable to gradually adapt the knowledge from the seen domain to the unseen domain. Consequently, by combining SPASS and ASTE, we present a self-paced Transductive ASTE (TASTE) method to progressively reinforce the classification capacity. Extensive experiments on three benchmark data sets (i.e., AwA, CUB, and aPY) demonstrate the superiorities of ASTE and TASTE. Furthermore, we also propose a fast training (FT) strategy to improve the efficiency of most existing ZSL methods. The FT strategy is surprisingly simple and general enough, which speeds up the training time of most existing ZSL methods by 4θicksim$300 times while holding the previous performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transductive Multi-label Zero-shot Learning

Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label...

متن کامل

Transductive Unbiased Embedding for Zero-Shot Learning

Most existing Zero-Shot Learning (ZSL) methods have the strong bias problem, in which instances of unseen (target) classes tend to be categorized as one of the seen (source) classes. So they yield poor performance after being deployed in the generalized ZSL settings. In this paper, we propose a straightforward yet effective method named Quasi-Fully Supervised Learning (QFSL) to alleviate the bi...

متن کامل

Transductive Zero-Shot Learning with a Self-training dictionary approach

As an important and challenging problem in computer vision, zero-shot learning (ZSL) aims at automatically recognizing the instances from unseen object classes without training data. To address this problem, ZSL is usually carried out in the following two aspects: 1) capturing the domain distribution connections between seen classes data and unseen classes data; and 2) modeling the semantic int...

متن کامل

Zero-Shot Learning via Revealing Data Distribution

This paper presents a method of zero-shot learning (ZSL) which poses ZSL as the missing data problem, rather than the missing label problem. Specifically, most existing ZSL methods focus on learning mapping functions from the image feature space to the label embedding space. Whereas, the proposed method explores a simple yet effective transductive framework in the reverse way – our method estim...

متن کامل

Transductive Multi-view Embedding for Zero-Shot Recognition and Annotation

Most existing zero-shot learning approaches exploit transfer learning via an intermediate-level semantic representation such as visual attributes or semantic word vectors. Such a semantic representation is shared between an annotated auxiliary dataset and a target dataset with no annotation. A projection from a low-level feature space to the semantic space is learned from the auxiliary dataset ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks and learning systems

دوره   شماره 

صفحات  -

تاریخ انتشار 2017