Investigation of Parameter Sensitivity of Short Channel Mosfets

نویسنده

  • S. SELBERHERR
چکیده

A strategy to examine the sensitivity of electrical device parameters on geometrical and technological tolerances is described. An approach is offered to determine the limit of device miniaturization for a given fabrication process and a desired operating condition. As a didactic example of practical relevance the minimum channel length for a modern silicon gate, double implant process due to threshold uncertainty is estimated. A method to calculate global sensitivity numbers for the reproducability of miniaturized devices is suggested. As an experimental determination of sensitivities is extremely difficult and expensive, numerical simulations are ideally suited for this purpose

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple General-purpose I-V Model for All Operating Modes of Deep Submicron MOSFETs

A simple general-purpose I-V model for all operating modes of deep-submicron MOSFETs is presented. Considering the most dominant short channel effects with simple equations including few extra parameters, a reasonable trade-off between simplicity and accuracy is established. To further improve the accuracy, model parameters are optimized over various channel widths and full range of operating v...

متن کامل

An Accurate 2D Analytical Model for Transconductance to Drain Current ratio (gm/Id) for a Dual Halo Dual Dielectric Triple Material Cylindrical Gate All Around MOSFETs

A dual-halo dual-dielectric triple-material cylindrical-gate-all-around/surrounding gate (DH-DD-TM-CGAA/SG) MOSFET has been proposed and an analytical model for the transconductance-to-drain current ratio (TDCR) has been developed. It is verified that incorporation of dual-halo with dual-dielectric and triple-material results in enhancing the device performance in terms of improved TDCR. The ef...

متن کامل

Investigation of source-to-drain capacitance by DIBL effect of silicon nanowire MOSFETs

We investigated the source-to-drain capacitance (Csd) due to DIBL effect of silicon nanowire (SNW) MOSFETs. Short-channel SNW devices operating at high drain voltages have the positive value of Csd by DIBL effect. On the other hand, junctionless SNW MOSFETs without source/drain (S/D) PN junctions have negative or zero values by small DIBL effect. By considering the additional source-todrain cap...

متن کامل

Investigation of Multiple Material Gate Impact on Short Channel Effects and Reliability of Nanoscale SOI MOSFETs

In this paper the features of multiple material gate silicon-on-insulator MOSFETs are presented and compared with single material gate silicon-on-insulator MOSFET structures. The results indicate that the multiple material gate structures reduce short channel effects such as drain induce barrier lowering, hot electron effect and better current characteristics in comparison with single material ...

متن کامل

A 3-D Atomistic Study of Archetypal Double Gate MOSFET Structures

The double gate MOSFET architecture has been proposed as a possible solution to allow the scaling of MOSFETs to the sub-30 nm regime, particularly due to its inherent resistance to short-channel effects. The use of lightly doped, or even undoped, channels means that such devices should be inherently resistant to random dopant induced fluctuations which will be one of the major obstacles to MOSF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002