On the Invariants of Towers of Function Fields over Finite Fields

نویسندگان

  • Florian Hess
  • Seher Tutdere
چکیده

We consider a tower of function fields F = (Fn)n≥0 over a finite field Fq and a finite extension E/F0 such that the sequence E := E ·F = (EFn)n≥0 is a tower over the field Fq. Then we deal with the following: What can we say about the invariants of E ; i.e., the asymptotic number of the places of degree r for any r ≥ 1 in E , if those of F are known? We give a method based on explicit extensions for constructing towers of function fields over Fq with finitely many prescribed invariants being positive, and towers of function fields over Fq, for q a square, with at least one positive invariant and certain prescribed invariants being zero. We show the existence of recursive towers attaining the DrinfeldVladut bound of order r, for any r ≥ 1 with q a square, see [1, Problem-2]. Moreover, we give some examples of recursive towers with all but one invariants equal to zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towers of Function Fields over Non-prime Finite Fields

Over all non-prime finite fields, we construct some recursive towers of function fields with many rational places. Thus we obtain a substantial improvement on all known lower bounds for Ihara’s quantity A(`), for ` = p with p prime and n > 3 odd. A modular interpretation of the towers is given as well.

متن کامل

Asymptotics for the genus and the number of rational places in towers of function fields over a finite field

We discuss the asymptotic behaviour of the genus and the number of rational places in towers of function fields over a finite field. © 2005 Elsevier Inc. All rights reserved.

متن کامل

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

Galois Towers over Non-prime Finite Fields

In this paper we construct Galois towers with good asymptotic properties over any nonprime finite field F`; i.e., we construct sequences of function fields N = (N1 ⊂ N2 ⊂ · · · ) over F` of increasing genus, such that all the extensions Ni/N1 are Galois extensions and the number of rational places of these function fields grows linearly with the genus. The limits of the towers satisfy the same ...

متن کامل

Structure of finite wavelet frames over prime fields

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $mathbb{W}_p$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011