Cross-subject comparison of principal diffusion direction maps.

نویسندگان

  • Armin Schwartzman
  • Robert F Dougherty
  • Jonathan E Taylor
چکیده

Diffusion tensor imaging (DTI) data differ fundamentally from most brain imaging data in that values at each voxel are not scalars but 3 x 3 positive definite matrices also called diffusion tensors. Frequently, investigators simplify the data analysis by reducing the tensor to a scalar, such as fractional anisotropy (FA). New statistical methods are needed for analyzing vector and tensor valued imaging data. A statistical model is proposed for the principal eigenvector of the diffusion tensor based on the bipolar Watson distribution. Methods are presented for computing mean direction and dispersion of a sample of directions and for testing whether two samples of directions (e.g., same voxel across two groups of subjects) have the same mean. False discovery rate theory is used to identify voxels for which the two-sample test is significant. These methods are illustrated in a DTI data set collected to study reading ability. It is shown that comparison of directions reveals differences in gross anatomic structure that are invisible to FA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Low-Dimensional Structure in Astronomical Spectra

Dimension-reduction techniques can greatly improve statistical inference in astronomy. A standard approach is to use Principal Components Analysis (PCA). In this letter we apply a recently-developed technique, diffusion maps, to astronomical spectra, and develop a robust, eigenmode-based framework for regression and data parameterization. We show how our framework provides a computationally eff...

متن کامل

Toward Reproducible Tract-specific In Vivo Diffusion Quantification in Human Cervical Spinal Cord

Figure 3. FA maps of a slice from C5 of a healthy subject without (A) and with (B) motion correction; and slice from C6 of a stable MS patient with good recovery without (C) and with (D) outlier rejection. Figure 4. FA maps of a slice from C3 of a healthy subject by LLS (A) and NLLM (B) DTI fitting from the six-direction scheme. The smallest eigenvalue maps (scale bar: -0.2 – 1 μm/ms) of a slic...

متن کامل

Tensor Field Regularisation for DT-MR Images

We present here a method to regularise diffusion tensor magnetic resonance images. The scheme is divided in two steps: a restoration of the principal diffusion direction (PDD) field, and a regularisation of the eigenvalue maps. The first step is based on a recent variational approach to restore direction maps, and the second step consists of an anisotropic diffusion scheme driven by the restore...

متن کامل

Diffusion tensor magnetic resonance image regularization

As multi-dimensional complex data become more common, new regularization schemes tailored to those data are needed. In this paper we present a scheme for regularising diffusion tensor magnetic resonance (DT-MR) data, and more generally multi-dimensional data defined by a direction map and one or several magnitude maps. The scheme is divided in two steps. First, a variational method is proposed ...

متن کامل

Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

Introduction: There is many ways to assessing the electrical conductivity anisotropyof a tumor. Applying the values of tissue electrical conductivity anisotropyis crucial in numerical modeling of the electric and thermal field distribution in electroporationtreatments. This study aims to calculate the tissues electrical conductivityanisotropy in patients with sarcoma tumors using diffusion tens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 2005