Nonorthogonal generalized Wannier function pseudopotential plane-wave method

نویسندگان

  • Chris-Kriton Skylaris
  • Arash A. Mostofi
  • Peter D. Haynes
  • Oswaldo Diéguez
  • Mike C. Payne
چکیده

We present a reformulation of the plane-wave pseudopotential method for insulators. This new approach allows us to perform density-functional calculations by solving directly for ‘‘nonorthogonal generalized Wannier functions’’ rather than extended Bloch states. We outline the theory on which our method is based and present test calculations on a variety of systems. Comparison of our results with a standard plane-wave code shows that they are equivalent. Apart from the usual advantages of the plane-wave approach such as the applicability to any lattice symmetry and the high accuracy, our method also benefits from the localization properties of our functions in real space. The localization of all our functions greatly facilitates the future extension of our method to linear-scaling schemes or calculations of the electric polarization of crystalline insulators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LDA + DMFT implemented with the pseudopotential plane - wave approach

We present a joint implementation of dynamical-mean-field theory (DMFT) with the pseudopotential plane-wave approach, via Wannier functions, for the determination of the electronic properties of strongly correlated materials. The scheme uses, as input for the DMFT calculations, a tight-binding Hamiltonian obtained from the planewave calculations by projecting onto atomic-centered symmetry-const...

متن کامل

Quasiatomic orbitals for ab initio tight-binding analysis

Wave functions obtained from plane-wave density-functional theory (DFT) calculations using normconserving pseudopotential, ultrasoft pseudopotential, or projector augmented-wave method are efficiently and robustly transformed into a set of spatially localized nonorthogonal quasiatomic orbitals (QOs) with pseudoangular momentum quantum numbers. We demonstrate that these minimal-basis orbitals ca...

متن کامل

Benchmark density functional theory calculations for nanoscale conductance.

We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five representative single-molecule junctions. The transmission functions are calculated using two different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code in combination with maximally localized Wannier functions and the norm-conserving pseudopotential code SIES...

متن کامل

Comparison of the Projector Augmented-Wave, Pseudopotential, and Linearized Augmented-Plane-Wave Formalisms for Density-Functional Calculations of Solids

The projector augmented-wave ~PAW! method was developed by Blöchl as a method to accurately and efficiently calculate the electronic structure of materials within the framework of density-functional theory. It contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron calculations, including the correct nodal behavior of the valence-electron wa...

متن کامل

Order-N projection method for first-principles computations of electronic quantities and Wannier functions

We present a generalized projection-based order-N method which is applicable within nonorthogonal basis sets of spatially localized orbitals. The projection to the occupied subspace of a Hamiltonian, performed by means of a Chebyshev-polynomial representation of the density operator, allows the nonvariational computation of band-structure energies, density matrices, and forces for systems with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002