Fast inhibition underlies the transmission of auditory information between cochlear nuclei.
نویسندگان
چکیده
A direct commissural connection between cochlear nuclei provides a pathway by which binaural input can influence the processing of acoustic information through the ventral cochlear nucleus. Despite anatomical evidence to suggest the existence of such a pathway, its nature and behavior have not been investigated previously. This in vivo intracellular electrophysiological study provides direct evidence of monosynaptic (mean latency, 1.43 msec), inhibitory commissural input to T stellate cells. This inhibition is fast acting (duration, <10 msec), occurring with little synaptic delay ( approximately 0.3 msec). Electrical stimulation also revealed the initiation of antidromic responses in the onset chopper population, signifying D stellate neurons as a source of commissural inputs. Activation of the commissural connection was most evident in response to broadband stimuli. These results provide the first compelling evidence of a fast, monosynaptic commissural pathway arising from contralateral D stellate neurons providing broadband inhibitory input to T stellate cells.
منابع مشابه
Comparison of Auditory Perception in Cochlear Implanted Children with and without Additional Disabilities
Background: The number of children with cochlear implants who have other difficulties such as attention deficiency and cerebral palsy has increased dramatically. Despite the need for information on the results of cochlear implantation in this group, the available literature is extremely limited. We, therefore, sought to compare the levels of auditory perception in children with cochlear implant...
متن کاملThe Relationship Between Reaction Time of Electrical Stapedius Reflex and Auditory Performance in Cochlear-Implanted Children
Background: A common concern in some cochlear-implanted children is the lack of desired progress in auditory and listening skills. Such a concern remains despite proper verbal processor programming, additional disabilities, and continuous participation in hearing rehabilitation programs. A more detailed assessment of pathways and centers of the auditory processing at the lower end of the brain ...
متن کاملOptical detection of developmental origin of synaptic function in the embryonic chick vestibulocochlear nuclei.
Functional organization of the brain stem vestibulocochlear nuclei during embryogenesis was investigated using a multiple-site optical recording technique with a fast voltage-sensitive dye. Brain stem slices with the cochlear and/or vestibular nerves attached were dissected from 6- to 8-day-old (E6-E8) chick embryos. Electrical responses evoked by cochlear or vestibular nerve stimulation were o...
متن کاملProjections of the pontine nuclei to the cochlear nucleus in rats.
In the cochlear nucleus, there is a magnocellular core of neurons whose axons form the ascending auditory pathways. Surrounding this core is a thin shell of microneurons called the granule cell domain (GCD). The GCD receives auditory and nonauditory inputs and projects in turn to the dorsal cochlear nucleus, thus appearing to serve as a central locus for integrating polysensory information and ...
متن کاملThe effect of cochlear implantation on the improvement of hearing performance in children suffering from profound hereditary and Non-hereditary hearing loss
Introduction: Hearing is one of the dominant senses of humans. In fact, human beings learn the language which is spoken in their environment and, then, develop the capability to speak. Cochlear implantation is introduced worldwide as a method for the treatment of the severe-to-profound sensory-neural hearing loss. Therefore, the present study aims to investigate the effect of cochlear implantat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 15 شماره
صفحات -
تاریخ انتشار 2003