AZ-Identities and Strict 2-Part Sperner Properties of Product Posets

نویسندگان

  • Harout K. Aydinian
  • Péter L. Erdös
چکیده

One of central issues in extremal set theory is Sperner's theorem and its generalizations. Among such generalizations is the best-known BLYM inequality and the Ahlswede--Zhang (AZ) identity which surprisingly generalizes the BLYM into an identity. Sperner's theorem and the BLYM inequality has been also generalized to a wide class of posets. Another direction in this research was the study of more part Sperner systems. In this paper we derive AZ type identities for regular posets. We also characterize all maximum 2-part Sperner systems for a wide class of product posets. Powered by Editorial Manager® and Preprint Manager® from Aries Systems Corporation AZ-identities and Strict 2-part Sperner Properties of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-LYM inequalities and AZ identities

We give pseudo-LYM inequalities in some posets and give a new restriction in this way for their antichains. Typically these posets fail the LYM inequality and some of them are known not to be Sperner.

متن کامل

Actions of a separately strict cpo-monoid on pointed directed complete posets

‎ In the present article‎, ‎we study some categorical properties of the category {$bf‎ Cpo_{Sep}$-$S$} of all {separately strict $S$-cpo's}; cpo's equipped with‎ a compatible right action of a separately strict cpo-monoid $S$ which is‎ strict continuous in each component‎. ‎In particular‎, we show that this category is reflective and coreflective in the‎ category of $S$-cpo's‎, ‎find the free a...

متن کامل

Properties of Graded Posets Preserved by Some Operations

We answer the following question: Let P and Q be graded posets having some property and let ◦ be some poset operation. Is it true that P ◦Q has also this property? The considered properties are: being Sperner, a symmetric chain order, Peck, LYM, and rank compressed. The studied operations are: direct product, direct sum, ordinal sum, ordinal product, rankwise direct product, and exponentiation.

متن کامل

Discrete Entropy Power Inequalities via Sperner Theory

A ranked poset is called strongly Sperner if the size of k-family cannot exceed the sum of k-largest Whitney numbers. In the sense of a function ordering, a function f is (weakly) majorized by g if the the sum of k-largest values in f cannot exceed the sum of k-largest values in g. Two definitions arise from different contexts, but they have strong similarities in their own meanings. Furthermor...

متن کامل

Incomparability and Intersection Properties of Boolean Interval Lattices and Chain Posets

In a canonical way we establish an AZ{identity (see [9]) and its consequences, the LYM{inequality and the Sperner{property, for the Boolean interval lattice. Further, the Bollobas{inequality for the Boolean interval lattice turns out to be just the LYM{ inequality for the Boolean lattice. We also present an Intersection Theorem for this lattice. Perhaps more surprising is that by our approach t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Order

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2014