Circumventing multiple testing: a multilocus Monte Carlo approach to testing for association.
نویسندگان
چکیده
Advances in marker technology have made a dense marker map a reality. If each marker is considered separately, and separate tests for association with a disease gene are performed, then multiple testing becomes an issue. A common solution uses a Bonferroni correction to account for multiple tests performed. However, with dense marker maps, neighboring markers are tightly linked and may have associated alleles; thus tests at nearby marker loci may not be independent. When alleles at different marker loci are associated, the Bonferroni correction may lead to a conservative test, and hence a power loss. As an alternative, for tests of association that use family data, we propose a Monte Carlo procedure that provides a global assessment of significance. We examine the case of tightly linked markers with varying amounts of association between them. Using computer simulations, we study a family-based test for association (the transmission/disequilibrium test), and compare its power when either the Bonferroni or Monte Carlo procedure is used to determine significance. Our results show that when the alleles at different marker loci are not associated, using either procedure results in tests with similar power. However, when alleles at linked markers are associated, the test using the Monte Carlo procedure is more powerful than the test using the Bonferroni procedure. This proposed Monte Carlo procedure can be applied whenever it is suspected that markers examined have high amounts of association, or as a general approach to ensure appropriate significance levels and optimal power.
منابع مشابه
An efficient Monte Carlo approach to assessing statistical significance in genomic studies
MOTIVATION Multiple hypothesis testing is a common problem in genome research, particularly in microarray experiments and genomewide association studies. Failure to account for the effects of multiple comparisons would result in an abundance of false positive results. The Bonferroni correction and Holm's step-down procedure are overly conservative, whereas the permutation test is time-consuming...
متن کاملQuickMMCTest: quick multiple Monte Carlo testing
Multiple hypothesis testing is widely used to evaluate scientific studies involving statistical tests. However, for many of these tests, p-values are not available and are thus often approximated using Monte Carlo tests such as permutation tests or bootstrap tests. This article presents a simple algorithm based on Thompson Sampling to test multiple hypotheses. It works with arbitrary multiple t...
متن کاملA new family of random graphs for testing spatial segregation
We discuss a graph-based approach for testing spatial point patterns. This approach falls under the category of data-random graphs, which have been introduced and used for statistical pattern recognition in recent years. Our goal is to test complete spatial randomness against segregation and association between two or more classes of points. To attain this goal, we use a particular type of para...
متن کاملA Monte Carlo simulation technique for assessment of earthquake-induced displacement of slopes
The dynamic response of slopes against earthquake is commonly characterized by the earthquake-induced displacement of slope (EIDS). The EIDS value is a function of several variables such as the material properties, slope geometry, and earthquake acceleration. This work is aimed at the prediction of EIDS using the Monte Carlo simulation method (MCSM). Hence, the parameters height, unit specific ...
متن کاملMarkov Chain Monte Carlo Random Testing
This paper proposes a software random testing scheme based on Markov chain Monte Carlo (MCMC) method. The significant issue of software testing is how to use the prior knowledge of experienced testers and the information obtained from the preceding test outcomes in making test cases. The concept of Markov chain Monte Carlo random testing (MCMCRT) is based on the Bayes approach to parametric mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetic epidemiology
دوره 19 1 شماره
صفحات -
تاریخ انتشار 2000