A nonparametric procedure for blind image deblurring
نویسنده
چکیده
Observed images are usually blurred versions of the true images, due to imperfections of the imaging devices, atmospheric turbulence, out of focus lens, motion blurs, and so forth. The major purpose of image deblurring is to restore the original image from its blurred version. A blurred image can be described by the convolution of the original image with a point spread function (psf) that characterizes the blurring mechanism. Thus, one essential problem for image deblurring is to estimate the psf from the observed but blurred image, which turns out to be a challenging task, due to the “ill-posed” nature of the problem. In the literature, most existing image deblurring procedures assume that either the psf is completely known or it has a parametric form. Motivated by some image applications, including handwritten text recognition and calibration of imaging devices, we suggest a method for estimating the psf nonparametrically, in cases when the true image has one or more line edges, which is usually satisfied in the applications mentioned above and which is not a big restriction in some other image applications, because it is often convenient to take pictures of objects with line edges, using the imaging device under study. Both theoretical justifications and numerical studies show that the proposed method works well in applications.
منابع مشابه
Progressive Blind Deconvolution
We present a novel progressive framework for blind image restoration. Common blind restoration schemes first estimate the blur kernel, then employ non-blind deblurring. However, despite recent progress, the accuracy of PSF estimation is limited. Furthermore, the outcome of non-blind deblurring is highly sensitive to errors in the assumed PSF. Therefore, high quality blind deblurring has remaine...
متن کاملBlind Image Deblurring via Reweighted Graph Total Variation
Blind image deblurring, i.e., deblurring without knowledge of the blur kernel, is a highly ill-posed problem. The problem can be solved in two parts: i) estimate a blur kernel from the blurry image, and ii) given estimated blur kernel, de-convolve blurry input to restore the target image. In this paper, by interpreting an image patch as a signal on a weighted graph, we first argue that a skelet...
متن کاملRecent Progress in Image Deblurring
This paper comprehensively reviews the recent development of image deblurring, including nonblind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the c...
متن کاملBlind image deblurring via coupled sparse representation
The problem of blind image deblurring is more challenging than that of non-blind image deblurring, due to the lack of knowledge about the point spread function in the imaging process. In this paper, a learningbased method of estimating blur kernel under the ‘0 regularization sparsity constraint is proposed for blind image deblurring. Specifically, we model the patch-based matching between the b...
متن کاملLearning a Discriminative Prior for Blind Image Deblurring
We present an effective blind image deblurring method based on a data-driven discriminative prior. Our work is motivated by the fact that a good image prior should favor clear images over blurred images. In this work, we formulate the image prior as a binary classifier which can be achieved by a deep convolutional neural network (CNN). The learned prior is able to distinguish whether an input i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 52 شماره
صفحات -
تاریخ انتشار 2008