Analysis of Fisher Information and the Cramér-Rao Bound for Nonlinear Parameter Estimation After Random Compression

نویسندگان

  • Pooria Pakrooh
  • Ali Pezeshki
  • Louis L. Scharf
  • Douglas Cochran
  • Stephen D. Howard
چکیده

In this paper, we analyze the impact of compression with complex random matrices on Fisher information and the Cramér-Rao Bound (CRB) for estimating unknown parameters in the mean value function of a complex multivariate normal distribution. We consider the class of random compression matrices whose distribution is right-unitarily invariant. The compression matrix whose elements are i.i.d. standard complex normal random variables is one such matrix. We show that for all such compression matrices, the Fisher information matrix has a complex matrix beta distribution. We also derive the distribution of CRB. These distributions can be used to quantify the loss in CRB as a function of the Fisher information of the noncompressed data. In our numerical examples, we consider a direction of arrival estimation problem and discuss the use of these distributions as guidelines for choosing compression ratios based on the resulting loss in CRB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cramér-Rao bound for estimation-after-selection

In many practical parameter estimation problems, a model selection is made prior to estimation. In this paper, we consider the problem of estimating an unknown parameter of a selected population, where the population is chosen from a population set by using a predetermined selection rule. Since the selection step may have an important impact on subsequent estimation, ignoring it could lead to b...

متن کامل

Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation

Posterior Cramér-Rao lower bounds (PCRLBs) [1] for sequential Bayesian estimators provide a performance bound for a general nonlinear filtering problem. However, the unconditional PCRLB [1] is an off-line bound whose corresponding Fisher information matrix (FIM) is obtained by taking the expectation with respect to all the random variables, namely the measurements and the system states. As a re...

متن کامل

Analytical Performance Bounds for Full and Reduced-order Distributed Bayesian Estimation

Motivated by the resource management problem in nonlinear multi-sensor tracking networks, the paper derives online, distributed estimation algorithms for computing the posterior Cramér-Rao lower bound (PCRLB) for full-order and reduced-order distributed Bayesian estimators without requiring a fusion centre and with nodal communications limited to local neighborhoods. For both cases, Riccati-typ...

متن کامل

New Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation

The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB) for sequential Bayesian estimators, derived by Tichavsky et al., provides an off-line performance bound for a general nonlinear filtering problem. Since the corresponding Fisher information matrix (FIM) is obtained by taking the expectation with respect to all the random variables, this PCRLB is not well suited for ...

متن کامل

A constrained hybrid Cramér-Rao bound for parameter estimation

In statistical signal processing, hybrid parameter estimation refers to the case where the parameters vector to estimate contains both non-random and random parameters. Numerous works have shown the versatility of deterministic constrained Cramér-Rao bound for estimation performance analysis and design of a system of measurement. However in many systems both random and non-random parameters may...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2015