Computer assisted proofs of solutions to Nonlinear elliptic partial differential equations
نویسندگان
چکیده
In this article, a numerical method is presented for computer assisted proofs to the existence and uniqueness of solutions to Dirichlet boundary value problems in a certain class of nonlinear elliptic equations. In a weak formulation of the problem, a weak solution is described as a zero point of a certain nonlinear map. Based on Newton-Kantorovich theorem, a numerical existence and local uniqueness of solutions are proved by our proposed method. Some conditions need to be checked numerically. It is shown that all errors of numerical computations such as discretization errors and rounding errors are figured out by numerical computations with result verification. Finally, an illustrative numerical result is presented for showing the usefulness of proposed method.
منابع مشابه
A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملTwo Topics in Computer Assisted Proofs for the Problems in Fluid Dynamics
We have been devoted for years to studying the numerical verifications of solutions to elliptic partial differential equations. Our approach is based on the combination of fixed point theorems in functional spaces and the constractive error estimations of finite element (or spectral) method. In our verification process, the interval method for finite-dimensional linear equations plays an essent...
متن کاملModified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کاملApplication of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کامل