Quantifying Emergence in Terms of Persistent Mutual Information

نویسندگان

  • Robin C. Ball
  • Marina Diakonova
  • Robert S. MacKay
چکیده

We define Persistent Mutual Information (PMI) as the Mutual (Shannon) Information between the past history of a system and its evolution significantly later in the future. This quantifies how much past observations enable long-term prediction, which we propose as the primary signature of (Strong) Emergent Behavior. The key feature of our definition of PMI is the omission of an interval of “present” time, so that the mutual information between close times is excluded: this renders PMI robust to superposed noise or chaotic behavior or graininess of data, distinguishing it from a range of established Complexity Measures. For the logistic map, we compare predicted with measured long-time PMI data. We show that measured PMI data captures not just the period doubling cascade but also the associated cascade of banded chaos, without confusion by the overlayer of chaotic decoration. We find that the standard map has apparently infinite PMI, but with well-defined fractal scaling which we can interpret in terms of the relative information codimension. Whilst our main focus is in terms of PMI over time, we can also apply the idea to PMI across space in spatially-extended systems as a generalization of the notion of ordered phases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of Persistent Mutual Information and Emergence

The persistent mutual information (PMI) is a complexity measure for stochastic processes. It is related to well-known complexity measures like excess entropy or statistical complexity. Essentially it is a variation of the excess entropy so that it can be interpreted as a specific measure of system internal memory. The PMI was first introduced in 2010 by Ball, Diakonova and MacKay as a measure f...

متن کامل

Quantifying field weeds emergence pattern of weeds in rapeseed (Brassica napus L.) under weather conditions of Khuzestan, Iran

In order to quantifying emergence pattern of rapeseed weeds, this experiment was conducted in 40 plots (40 quadrates at Agricultural Sciences and Natural Resources University of Khuzestan, and 30 fields of Bavi (30 quadrates), Ahvaz, Iran, in 2016-2017 growing seasons was monitored, counted and recorded weekly. Three different emergence pattern of nine weed species were identified, Prickly lett...

متن کامل

Conditional Dynamic Mutual Information-Based Feature Selection

With emergence of new techniques, data in many fields are getting larger and larger, especially in dimensionality aspect. The high dimensionality of data may pose great challenges to traditional learning algorithms. In fact, many of features in large volume of data are redundant and noisy. Their presence not only degrades the performance of learning algorithms, but also confuses end-users in th...

متن کامل

Probabilistic Sufficiency and Algorithmic Sufficiency from the point of view of Information Theory

‎Given the importance of Markov chains in information theory‎, ‎the definition of conditional probability for these random processes can also be defined in terms of mutual information‎. ‎In this paper‎, ‎the relationship between the concept of sufficiency and Markov chains from the perspective of information theory and the relationship between probabilistic sufficiency and algorithmic sufficien...

متن کامل

On The Behavior of Malaysian Equities: Fractal Analysis Approach

Fractal analyzing of continuous processes have recently emerged in literatures in various domains. Existence of long memory in many processes including financial time series have been evidenced via different methodologies in many literatures in past decade, which has inspired many recent literatures on quantifying the fractional Brownian motion (fBm) characteristics of financial time series. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in Complex Systems

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2010