Electron-trapping polycrystalline materials with negative electron affinity.

نویسندگان

  • Keith P McKenna
  • Alexander L Shluger
چکیده

The trapping of electrons by grain boundaries in semiconducting and insulating materials is important for a wide range of physical problems, for example, relating to: electroceramic materials with applications as sensors, varistors and fuel cells, reliability issues for solar cell and semiconductor technologies and electromagnetic seismic phenomena in the Earth's crust. Surprisingly, considering their relevance for applications and abundance in the environment, there have been few experimental or theoretical studies of the electron trapping properties of grain boundaries in highly ionic materials such as the alkaline earth metal oxides and alkali halides. Here we demonstrate, by first-principles calculations on MgO, LiF and NaCl, a qualitatively new type of electron trapping at grain boundaries. This trapping is associated with the negative electron affinity of these materials and is unusual as the electron is confined in the empty space inside the dislocation cores.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrathin textured polycrystalline oxide with a high electron conduction efficiency prepared by thermal oxidation of thin polycrystalline silicon film on n+ polycrystalline silicon

This letter presents an ultrathin textured polycrystalline oxide (polyoxide) ( ~100 A) prepared by thermal oxidation of thin polycrystalline silicon (polysilicon) film on n+ polysilicon. The presented textured polyoxide exhibits a much higher electron injection efficiency, a much smaller electron trapping rate, and a much larger charge to breakdown than the normal polyoxide. The value of Qhd of...

متن کامل

Modeling of the electron field emission process in polycrystalline diamond and diamond-like carbon thin films

Electron field emission has been observed from carbon thin films at relatively low electric fields. These films range from amorphous carbon to polycrystalline diamond films. There are many models that attempt to account for the electron field emission process observed in these films. The initial models that were based on the emission due purely to a negative electron affinity have now been modi...

متن کامل

Morphological Characterization of Combustion Deposited Diamond Crystals and Films

Single crystals and polycrystalline diamond films of several thicknesses were deposited using oxygen/acetylene combustion flame technique. The substrate used was pure polycrystalline molybdenum subjected to mechanical polishing. Quality and microstructural characteristic of diamond produced were investigated using X-Ray diffraction, Raman Spectroscopy, Scanning and Transmission Electron Microsc...

متن کامل

Derivation of ionization energy and electron affinity equations using chemical hardness and absolute electronegativity in isoelectronic series

Chemical hardness () and absolute electronegativity () have important applications in chemistry. Inthe conceptual Density Functional theory (DFT), these concepts has been associated with electronicenergy and the relationship with ionization energy (I) and electron affinity (A) of these concepts hasbeen given. In this study, graphical method was used in order to see the relationship with the ato...

متن کامل

Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites

Resistivity, Seebeck coefficient, and Hall measurements were performed on densified nanocrystalline composite materials of undoped and Ag-doped PbTe nanocrystals to investigate the physical mechanisms responsible for Seebeck coefficient enhancement in nanocrystalline systems. The unique temperature dependence of the resistivity and mobility for these PbTe nanocomposites suggests that grain-boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 2008