Position and Force Control of a Walking Hexapod
نویسندگان
چکیده
This paper compares the performance of classical position PD algorithm with a cascade controller involving position and force feedback loops, for multi-legged locomotion systems and variable ground characteristics. For that objective the robot prescribed motion is characterized in terms of several locomotion variables. Moreover, we formulate several performance measures of the walking robot based on the robot and terrain dynamical properties and on the robot hip and foot trajectory errors. Several experiments reveal the performance of the different control architectures in the proposed indices.
منابع مشابه
Hamlet: Force/Position Controlled Hexapod Walker - Design and Systems
Hamlet is a hexapod walker constructed at the University of Canterbury, New Zealand, to test the effectiveness of combined force and position control to achieve robust, adaptable walking over rough and unknown environments. In particular the authors propose that compliance behaviours using the horizontal force measured at the feet will allow the robot to navigate slippery and dynamic surfaces s...
متن کاملAdaptive impedance control based on CoM for hexapod robot walking on the bottom of ocean
This paper presents a proposed adaptive impedance control that derived based on Center of Mass (CoM) of the hexapod robot for walking on the bottom of water or seabed. The study has been carried out by modeling the buoyancy force following the restoration force to achieve the drowning level according to the Archimedes’ principle. The restoration force need to be positive in order to ensure robo...
متن کاملImproving the Navigability of a Hexapod Robot using a Fault-Tolerant Adaptive Gait
This paper encompasses a study on the development of a walking gait for fault tolerant locomotion in unstructured environments. The fault tolerant gait for adaptive locomotion fulfills stability conditions in opposition to a fault (locked joints or sensor failure) event preventing a robot to realize stable locomotion over uneven terrains. To accomplish this feat, a ...
متن کاملMotion Planning Using an Impact-Based Hybrid Control for Trajectory Generation in Adaptive Walking
This paper aims to solve a major drawback of walking robots i.e. their inability to react to environmental disturbances while navigating in natural rough terrains. This problem is reduced here by suggesting the use of a hybrid force‐position control based trajectory generation with the impact dynamics into consideration that compensates for the stabilit...
متن کاملKinematic and Gait Analysis Implementation of an Experimental Radially Symmetric Six-Legged Walking Robot
As a robot could be stable statically standing on three or more legs, a six legged walking robot can be highly flexible in movements and perform different missions without dealing with serious kinematic and dynamic problems. An experimental six legged walking robot with 18 degrees of freedom is studied and built in this paper. The kinematic and gait analysis formulations are demonstrated by an e...
متن کامل