An adaptive fuzzy logic quaternion scaled unscented Kalman filtering for inertial navigation system, GPS and magnetometer sensors integration

نویسندگان

  • Wassim Khoder
  • Bassem Jida
چکیده

In this paper, we present a technique based on fuzzy logic to improve the performance of the inertial navigation system integrated with GPS, and magnetometer. The proposed fuzzy technique is primarily used to predict position and velocity measurements during GPS outage signals. As long as the GPS measurements are available, the Q-SUKF of INS/GPS/MAG (MAG: magnetometer) integrated system operates efficiently and provides precise navigation states estimation. Nevertheless, during GPS outage signals, the proposed fuzzy technique is adapted to the Q-SUKF to obtain the (A) (FL) QSUKF (Adaptive Fuzzy Logic Quaternion Scaled Unscented Kalman Filter) in order to correct the degradation of the performance of the algorithm. The adaptive fuzzy logic attributes values to the measurements covariance matrix in order to determine the gain of the filter. It will decrease the measurement noise variance of the Kalman filter and then improves eventually the accuracy of the integrated navigation system states estimation. Finally, an experimental part on the use of the proposed fuzzy technical with the Q-SUKF has been validated. Several GPS outages with duration of 30s have been simulated to study the behavior of the proposed filter. In addition, an initial attitude error of 60 degrees is given in each axis to test the robustness of the filter proposed under large attitude errors. The results of the experimental validation have shown the effectiveness and the significant impact of the (A) (FL) Q-SUKF in the reduction of the drift errors estimation of the position and velocity in case of GPS outages in the tested scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Navigation Accuracy using Tightly Coupled Kalman Filter

In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...

متن کامل

GPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering

The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...

متن کامل

Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the sy...

متن کامل

Low cost automation using INS/GPS data fusion for accurate positioning

Low cost automation often requires accurate positioning. This happens whenever a vehicle or robotic manipulator is used to move materials, parts or minerals on the factory floor or outdoors. In last few years, such vehicles and devices are mostly autonomous. This paper presents the method of sensor fusion based on the Adaptive Fuzzy Kalman Filtering. This method has been applied to fuse positio...

متن کامل

INS/GNSS Tightly-Coupled Integration Using Quaternion-Based AUPF for USV

This paper addresses the problem of integration of Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) for the purpose of developing a low-cost, robust and highly accurate navigation system for unmanned surface vehicles (USVs). A tightly-coupled integration approach is one of the most promising architectures to fuse the GNSS data with INS measurements. However, the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014