The minimum volume of subspace trades

نویسنده

  • Denis S. Krotov
چکیده

A subspace bitrade of type Tq(t, k, v) is a pair (T0, T1) of two disjoint nonempty collections (trades) of k-dimensional subspaces of a v-dimensional space F v over the finite field of order q such that every t-dimensional subspace of V is covered by the same number of subspaces from T0 and T1. In a previous paper, the minimum cardinality of a subspace Tq(t, t + 1, v) bitrade was establish. We generalize that result by showing that for admissible v, t, and k, the minimum cardinality of a subspace Tq(t, k, v) bitrade does not depend on k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the possible volume of $mu$-$(v,k,t)$ trades

‎A $mu$-way $(v,k,t)$ $trade$ of volume $m$ consists of $mu$‎ ‎disjoint collections $T_1$‎, ‎$T_2‎, ‎dots T_{mu}$‎, ‎each of $m$‎ ‎blocks‎, ‎such that for every $t$-subset of $v$-set $V$ the number of‎ ‎blocks containing this t-subset is the same in each $T_i (1leq‎ ‎i leq mu)$‎. ‎In other words any pair of collections ${T_i,T_j}$‎, ‎$1leq i< j leq mu‎$ is a $(v,k,t)$ trade of volume $m$. In th...

متن کامل

On 2-(v, 3) trades of minimum volume

In this paper, Steiner and non-Steiner 2-(v, 3) trades of minimum volume are considered. It is shown that these trades are composed of a union of some Pasch configurations and possibly some 2-(v, 3) trades with 6 ≤ v ≤ 10. We determine the number of non-isomorphic Steiner 2-(v, 3) trades of minimum volume. As for non-Steiner trades the same thing is done for all vs, except for v ≡ 5 (mod 6).

متن کامل

On directed trades

A (v, k, t) directed trade (or simply a (v, k, t)DT) of volume s consists of two disjoint collections Tl and each containing ordered k-tuples of distinct elements of a v-set called blocks, such that the number of blocks containing any t-tuple of V is the same in Tl as in T2 . Our study shows that the volume of a (v, k, t)DT is at least 2Lt/ 2J and that directed trades with minimum volume and mi...

متن کامل

Classification of simple 2-(6, 3) and 2-(7, 3) trades

In this paper, we present a complete classification of the simple 2-(v, 3) trades, for v = 6 and 7. For v = 6, up to isomorphism, there are unique trades with volumes 4, 6, and 10 and trades with volumes 7-9 do not exist; for v = 7, up to isomorphism, there exist two trades with volume 6, two trades with volume 7, two trades with volume 9, five trades with volume 10, and only one trade with vol...

متن کامل

On minimum possible volumes of strong Steiner trades

In this note we investigate the minimum possible volumes for strong Steiner trades (SST). We prove that a (v, q + 1,2) SST must have at least q2 blocks if q is even and q2 + q blocks if q is odd. We construct a (v, q+ 1, 2) SST of volume q2 for every q a power of two, and a (v, q+ 1, 2) SST of volume q2 + q, for every q such that q + 1 is a power of two. A construction of (q2 + q + 1, q + 1,2) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 340  شماره 

صفحات  -

تاریخ انتشار 2017