Acidity-Controlled Conducting Polymer Films for Organic Thermoelectric Devices with Horizontal and Vertical Architectures
نویسندگان
چکیده
Organic thermoelectric devices (OTEDs) are recognized one of the next generation energy conversion platforms because of their huge potentials for securing electricity continuously from even tiny heat sources in our daily life. The advantage of OTEDs can be attributable to the design freedom in device shapes and the low-cost fabrication by employing solution coating processes at low temperatures. As one of the major OTE materials to date, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been used, but no study has been yet carried out on its acidity control even though the acidic components in OTEDs can seriously affect the device performance upon operation. Here we demonstrate that the addition of aniline (a weak base) can control the acidity of PEDOT:PSS and enhance the performance of OTEDs. In particular, the vertical OTEDs with aniline-doped PEDOT:PSS films (active area = 1.0 cm2) could continuously generate electricity (0.06 nW) even at low temperatures (<38 °C) when they were mounted on a desk lamp (power = 24 W).
منابع مشابه
Thermoelectric properties of conducting polymers
According to different sources, from forty to sixty percent of the overall energy generated in the world today is squandered in waste heat. The existing energy conversion technologies are either close to their efficiency limits or too costly to justify their implementation. Therefore, the development of new technological approaches for waste heat recovery is highly demanded. The field of thermo...
متن کاملBacteriorhodopsin Based Films as a Nanomemory
Photonic molecular devices have attracted tremendous interests because of their small size and light weight. The biologic protein bacteriorhodopsin (bR) and its derivatives are among the most promising candidates for potential applications in biomolecular photonics due to their unique properties [5]. In this investigation, film based on bR in Gelatin-polyvinil alcohol matrix of 0.001% (w/v) was...
متن کاملConducting Polymer 3D Microelectrodes
Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination...
متن کاملHighly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy
Conducting polymers are potential candidates for thermoelectric (TE) applications owing to their low thermal conductivity, non-toxicity and low cost. However, the coil conformation and random aggregation of polymer chains usually degrade electrical transport properties, thus deteriorating TE performance. In this work, we fabricated poly(3-hexylthiophene) (P3HT) films with highly oriented morpho...
متن کاملUpscaling Organic Electronic Devices
Conventional electronics based on silicon, germanium, or compounds of gallium require prohibitively expensive investments. A state-of-the-art microprocessor fabrication facility can cost up to $15 billion while using environmentally hazardous processes. In that context, the discovery of solution-processable conducting (and semiconducting) polymers stirred up expectations of ubiquitous electroni...
متن کامل