Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein.
نویسندگان
چکیده
Myotonic dystrophy (DM) is associated with a (CTG) (n) triplet repeat expansion in the 3'-untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. Using electron microscopy, we visualized large RNAs containing up to 130 CUG repeats and studied the binding of purified CUG-binding protein (CUG-BP) to these RNAs. Electron microscopic examination revealed perfect double-stranded (ds)RNA segments whose lengths were that expected for duplex RNA. The RNA dominant mutation model for DM pathogenesis predicts that the expansion mutation acts at the RNA level by forming long dsRNAs that sequester certain RNA-binding proteins. To test this model, we examined the subcellular distribution and RNA-binding properties of CUG-BP. While previous studies have demonstrated that mutant DMPK transcripts accumu-late in nuclear foci, the localization pattern of CUG-BP in both normal and DM cells was similar. Although CUG-BP in nuclear extracts preferentially photocrosslinked to DMPK transcripts, this binding was not proportional to (CUG) (n) repeat size. Moreover, CUG-BP localized to the base of the RNA hairpin and not along the stem, as visualized by electron micro-scopy. These results provide the first visual evidence that the DM expansion forms an RNA hairpin structure and suggest that CUG-BP is unlikely to be a sequestered factor.
منابع مشابه
Muscleblind protein, MBNL1/EXP, binds specifically to CHHG repeats.
Myotonic dystrophy (DM) type 1 is caused by an expansion of a CTG repeat in the DMPK gene and type 2 by a CCTG repeat in the ZNF9 gene. Previous reports have suggested that transcripts containing expanded CUG/CCUG repeats might have toxic gain-of-function effects, probably affecting the function of RNA-binding proteins in the pathogenesis of DM. Here, it was attempted to compare the RNA-binding...
متن کاملNovel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy.
While an unstable CTG triplet repeat expansion is responsible for myotonic dystrophy, the mechanism whereby this genetic defect induces the disease remains unknown. To detect proteins binding to CTG triplet repeats, we performed bandshift analysis using as probes double-stranded DNA fragments having CTG repeats [ds(CTG)6-10] and single-stranded oligonucleotides having CTG repeats ss(CTG)8 or RN...
متن کاملIdentification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy.
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease that is associated with a (CTG)n repeat expansion in the 3'-untranslated region of the myotonin protein kinase (Mt-PK) gene. This study reports the isolation and characterization of a (CUG)n triplet repeat pre-mRNA/mRNA binding protein that may play an important role in DM pathogenesis. Two HeLa cell proteins, CUG-BP1 and CU...
متن کاملThe RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and promotes alternative pre-mRNA splicing
In myotonic dystrophy type 1 (DM1), dystrophia myotonica protein kinase messenger ribonucleic acids (RNAs; mRNAs) with expanded CUG repeats (CUG(exp)) aggregate in the nucleus and become toxic to cells by sequestering and/or misregulating RNA-binding proteins, resulting in aberrant alternative splicing. In this paper, we find that the RNA-binding protein Staufen1 is markedly and specifically in...
متن کاملModifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model
CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein-RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To eva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 27 17 شماره
صفحات -
تاریخ انتشار 1999