Efficient scalar product protocol and its privacy-preserving application
نویسندگان
چکیده
Scalar product protocol aims at securely computing the dot product of two private vectors. As a basic tool, the protocol has been widely used in privacy preserving distributed collaborative computations. In this paper, at the expense of disclosing partial sum of some private data, we propose a linearly efficient even-dimension scalar product protocol (EDSPP) without employing expensive homomorphic crypto-system and any third party. The correctness and security of EDSPP are confirmed by theoretical analysis. In comparison with six most frequently-used schemes of scalar product protocol (to the best of our knowledge), the new scheme is the most efficient one, and it has good fairness. Simulated experiment results intuitively indicate the good performance of our scheme. Consequently, in the situations where divulging very limited information about private data is acceptable, EDSPP is an extremely competitive candidate secure primitive to achieve practical schemes of privacy preserving distributed cooperative computations. We also discuss the application of EDSPP, and present a secure distance comparison protocol based on EDSPP, which can be used in many privacy-preserving computations, such as privacy-preserving k-nearest neighbours computation. Additionally, a hybrid scheme is put forward to securely compute the scalar product of arbitrary-length private vectors.
منابع مشابه
A New Efficient Privacy-Preserving Scalar Product Protocol
Recently, privacy issues have become important in data analysis, especially when data is horizontally partitioned over several parties. In data mining, the data is typically represented as attribute-vectors and, for many applications, the scalar (dot) product is one of the fundamental operations that is repeatedly used. In privacy-preserving data mining, data is distributed across several parti...
متن کاملOn Private Scalar Product Computation for Privacy-Preserving Data Mining
In mining and integrating data from multiple sources, there are many privacy and security issues. In several different contexts, the security of the full privacy-preserving data mining protocol depends on the security of the underlying private scalar product protocol. We show that two of the private scalar product protocols, one of which was proposed in a leading data mining conference, are ins...
متن کاملA Secure Scalar Product Protocol and Its Applications to Computational Geometry
A secure scalar product protocol is a type of specific SMC problem, and has found various applications in many areas such as privacy-preserving data mining, privacy-preserving cooperative statistical analysis, and privacy-preserving geometry computation. In this paper, we firstly extend to a solution of homomorphic-encryption based secure scalar product protocol such that it enables the scheme ...
متن کاملA Fast Secure Dot Product Protocol with Application to Privacy Preserving Association Rule Mining
Data mining often causes privacy concerns. To ease the concerns, various privacy preserving data mining techniques have been proposed. However, those techniques are often too computationally intensive to be deployed in practice. Efficiency becomes a major challenge in privacy preserving data mining. In this paper we present an efficient secure dot product protocol and show its application in pr...
متن کاملMulti-Party Privacy-Preserving Decision Trees for Arbitrarily Partitioned Data
Privacy-preserving data mining seeks to empower conventional data mining techniques with the desirable property of preserving data privacy during the mining process. Given existing approaches on privacy-preserving decision tree induction for horizontally and vertically partitioned data involving multiple parties, we extend current work to multiple parties holding arbitrarily partitioned data. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJESDF
دوره 7 شماره
صفحات -
تاریخ انتشار 2015