Controllable delivery of hydrophilic and hydrophobic drugs from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats.
نویسندگان
چکیده
Co-delivery of several drugs has been regarded as an alternative strategy for achieving enhanced therapeutic effect. In this study, a co-delivery system based on the electrospun poly(lactic-co-glycolic acid) (PLGA)/mesoporous silica nanoparticles (MSNs) composite mat was designed for the co-encapsulation and prolonged release of one hydrophilic and one hydrophobic drug simultaneously. MSNs were chosen to load the hydrophobic model drug fluorescein (FLU) and hydrophilic model drug rhodamine B (RHB), respectively (named as RHB-loaded MSNs and FLU-loaded MSNs). Two kinds of drug-loaded MSNs were incorporated into the polymer matrix to form a fibrous structure by blending electrospinning. The effect of the weight ratios for the two kinds of drug-loaded MSNs and the initial PLGA concentrations on the drug release kinetics were systematically investigated. The results showed that both model drugs RHB and FLU maintained sustained delivery with controllable release kinetics during the releasing period, and the release kinetics was closely dependent on the loading ratios of two drug-loaded MSNs and the initial PLGA concentrations in the composite mats. The results suggest that the co-drug delivery system may be used for wound dressing that requires the combined therapy of several kinds of drugs.
منابع مشابه
Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles.
The aim of this study was to fabricate dual drug-loaded poly(lactic-co-glycolic acid) (PLGA)/mesoporous silica nanoparticles (MSNs) electrospun composite mat, with the two model drugs (fluorescein (FLU) and rhodamine B (RHB)) releasing in separate and distinct release kinetics. The PLGA-based electrospun mat loading with the same amount of FLU (5%, with respect to the weight of PLGA) and differ...
متن کاملPreparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance
Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...
متن کاملPreparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance
Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...
متن کاملUltrasound-triggered dual-drug release from poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles electrospun composite fibers
The aim of this study was to achieve on-demand controlled drug release from the dual-drug-loaded poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles electrospun composite fibers by the application of ultrasound irradiation. Two drugs were loaded in different part of the composite fibrous materials, and it was found that ultrasound as an external stimulus was able to control release of...
متن کاملDelivering hydrophilic and hydrophobic chemotherapeutics simultaneously by magnetic mesoporous silica nanoparticles to inhibit cancer cells
Using nanoparticles to deliver chemotherapeutics offers new opportunities for cancer therapy, but challenges still remain when they are used for the delivery of multiple drugs, especially for the synchronous delivery of hydrophilic and hydrophobic drugs in combination therapies. In this paper, we developed an approach to deliver hydrophilic-hydrophobic anticancer drug pairs by employing magneti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 100 8 شماره
صفحات -
تاریخ انتشار 2012