The selective estrogen enzyme modulators in breast cancer: a review.
نویسنده
چکیده
It is well established that increased exposure to estradiol (E(2)) is an important risk factor for the genesis and evolution of breast tumors, most of which (approximately 95-97%) in their early stage are estrogen-sensitive. However, two thirds of breast cancers occur during the postmenopausal period when the ovaries have ceased to be functional. Despite the low levels of circulating estrogens, the tissular concentrations of these hormones are significantly higher than those found in the plasma or in the area of the breast considered as normal tissue, suggesting a specific tumoral biosynthesis and accumulation of these hormones. Several factors could be implicated in this process, including higher uptake of steroids from plasma and local formation of the potent E(2) by the breast cancer tissue itself. This information extends the concept of 'intracrinology' where a hormone can have its biological response in the same organ where it is produced. There is substantial information that mammary cancer tissue contains all the enzymes responsible for the local biosynthesis of E(2) from circulating precursors. Two principal pathways are implicated in the last steps of E(2) formation in breast cancer tissues: the 'aromatase pathway' which transforms androgens into estrogens, and the 'sulfatase pathway' which converts estrone sulfate (E(1)S) into E(1) by the estrone-sulfatase. The final step of steroidogenesis is the conversion of the weak E(1) to the potent biologically active E(2) by the action of a reductive 17beta-hydroxysteroid dehydrogenase type 1 activity (17beta-HSD-1). Quantitative evaluation indicates that in human breast tumor E(1)S 'via sulfatase' is a much more likely precursor for E(2) than is androgens 'via aromatase'. Human breast cancer tissue contains all the enzymes (estrone sulfatase, 17beta-hydroxysteroid dehydrogenase, aromatase) involved in the last steps of E(2) biosynthesis. This tissue also contains sulfotransferase for the formation of the biologically inactive estrogen sulfates. In recent years, it was demonstrated that various progestins (promegestone, nomegestrol acetate, medrogestone, dydrogesterone, norelgestromin), tibolone and its metabolites, as well as other steroidal (e.g. sulfamates) and non-steroidal compounds, are potent sulfatase inhibitors. Various progestins can also block 17beta-hydroxysteroid dehydrogenase activities. In other studies, it was shown that medrogestone, nomegestrol acetate, promegestone or tibolone can stimulate the sulfotransferase activity for the local production of estrogen sulfates. All these data, in addition to numerous agents which can block the aromatase action, lead to the new concept of 'Selective Estrogen Enzyme Modulators' (SEEM) which can largely apply to breast cancer tissue. The exploration of various progestins and other active agents in trials with breast cancer patients, showing an inhibitory effect on sulfatase and 17beta-hydroxysteroid dehydrogenase, or a stimulatory effect on sulfotransferase and consequently on the levels of tissular levels of E(2), will provide a new possibility in the treatment of this disease.
منابع مشابه
Melatonin modulation of crosstalk among malignant epithelial, endothelial and adipose cells in breast cancer (Review)
Melatonin, the main secretory product of the pineal gland, is an oncostatic agent that reduces the growth and development of various types of tumors, particularly mammary tumors whose growth is dependent on estrogens. Previous in vivo and in vitro studies point to the hypothesis that melatonin interplays with estrogen signaling pathways at three different levels: i) an indirect mechanism, by in...
متن کاملAnastrozole Use in Early Stage Breast Cancer of Post-Menopausal Women.
The majority of breast cancers express the estrogen receptor and depend on estradiol (E2) for their growth. Hormonal therapy aims at depriving estrogen signaling either by using selective estrogen receptor modulators (SERM)-that interfere with the binding of E2 to its receptor (ER)-or aromatase inhibitors (AI)-that block the aromatase-dependent synthesis of E2. While SERMs are recommended for b...
متن کاملProof of concept review Arzoxifene: the evidence for its development in the management of breast cancer
Introduction: Endocrine therapy is an important and integral part of breast cancer management. Selective estrogen receptor modulators (SERMs), such as tamoxifen, remain a vital component in the endocrine therapy armamentarium. However the “ideal SERM”, which has antagonist effects on the breast and endometrium but beneficial agonistic effects on bone and lipid profile, remains to be found. Aim:...
متن کاملArzoxifene: the evidence for its development in the management of breast cancer
INTRODUCTION Endocrine therapy is an important and integral part of breast cancer management. Selective estrogen receptor modulators (SERMs), such as tamoxifen, remain a vital component in the endocrine therapy armamentarium. However the "ideal SERM", which has antagonist effects on the breast and endometrium but beneficial agonistic effects on bone and lipid profile, remains to be found. AIM...
متن کاملThe Effect of Selective Estrogen Receptor Modulators (SERMs) on the Tamoxifen Resistant Breast Cancer Cells
Selective estrogen receptor modulators (SERMs) are synthetic molecules which bind to estrogen receptors (ER) and can modulate its transcriptional capabilities in different ways in diverse estrogen target tissues. Tamoxifen, the prototypical SERM, is extensively used for targeted therapy of ER positive breast cancers. Unfortunately, the use of tamoxifen is associated with acquired resistance and...
متن کاملNew Selective Estrogen Receptor Modulators (SERMs) in Development
Selective estrogen receptor modulators (SERMs) or estrogen agonists/antagonists have shown promise in osteoporosis in that they have the potential to reduce the risk of fracture, and also reduce the risk of breast cancer. SERMs maybe classified according to their core structure, which is typically a variation of the 17 beta-estradiol template and subclassified according to the side chain at the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1654 2 شماره
صفحات -
تاریخ انتشار 2004