Mes1 controls the meiosis I to meiosis II transition by distinctly regulating the anaphase-promoting complex/cyclosome coactivators Fzr1/Mfr1 and Slp1 in fission yeast

نویسندگان

  • Yuu Kimata
  • Kenji Kitamura
  • Nicola Fenner
  • Hiroyuki Yamano
چکیده

Meiosis is a specialized form of cell division generating haploid gametes and is dependent upon protein ubiquitylation by the anaphase-promoting complex/cyclosome (APC/C). Accurate control of the APC/C during meiosis is important in all eukaryotic cells and is in part regulated by the association of coactivators and inhibitors. We previously showed that the fission yeast meiosis-specific protein Mes1 binds to a coactivator and inhibits APC/C; however, regulation of the Mes1-mediated APC/C inhibition remains elusive. Here we show how Mes1 distinctively regulates different forms of the APC/C. We study all the coactivators present in the yeast genome and find that only Slp1/Cdc20 is essential for meiosis I progression. However, Fzr1/Mfr1 is a critical target for Mes1 inhibition because fzr1Δ completely rescues the defect on the meiosis II entry in mes1Δ cells. Furthermore, cell-free studies suggest that Mes1 behaves as a pseudosubstrate for Fzr1/Mfr1 but works as a competitive substrate for Slp1. Intriguingly, mutations in the D-box or KEN-box of Mes1 increase its recognition as a substrate by Fzr1, but not by Slp1. Thus Mes1 interacts with two coactivators in a different way to control the activity of the APC/C required for the meiosis I/meiosis II transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spindle checkpoint activation at meiosis I advances anaphase II onset via meiosis-specific APC/C regulation

During mitosis, the spindle assembly checkpoint (SAC) inhibits the Cdc20-activated anaphase-promoting complex/cyclosome (APC/C(Cdc20)), which promotes protein degradation, and delays anaphase onset to ensure accurate chromosome segregation. However, the SAC function in meiotic anaphase regulation is poorly understood. Here, we examined the SAC function in fission yeast meiosis. As in mitosis, a...

متن کامل

Cuf2 boosts the transcription of APC/C activator Fzr1 to terminate the meiotic division cycle.

The number of nuclear divisions in meiosis is strictly limited to two. Although the precise mechanism remains unknown, this seems to be achieved by adjusting the anaphase-promoting complex/cyclosome (APC/C) activity to degrade cyclin. Here, we describe a fission yeast cuf2 mutant that enters into a third nuclear division cycle, represented by ectopic spindle assembly and abnormal chromosome seg...

متن کامل

Fission yeast mfr1 activates APC and coordinates meiotic nuclear division with sporulation.

Meiosis is the developmental program by which sexually reproducing diploid organisms generate haploid gametes. In yeast, meiosis is followed by spore morphogenesis. These two events are normally coordinated in such a way that spore formation is dependent upon completion of the meiotic nuclear divisions. Here we describe a meiosis-specific protein, mfr1, that is involved in this coordination. mf...

متن کامل

The Ama1-directed anaphase-promoting complex regulates the Smk1 mitogen-activated protein kinase during meiosis in yeast.

Smk1 is a meiosis-specific MAPK homolog in Saccharomyces cerevisiae that regulates the postmeiotic program of spore formation. Similar to other MAPKs, it is activated via phosphorylation of the T-X-Y motif in its regulatory loop, but the signals controlling Smk1 activation have not been defined. Here we show that Ama1, a meiosis-specific activator of the anaphase-promoting complex/cyclosome (AP...

متن کامل

Dual-mode regulation of the APC/C by CDK1 and MAPK controls meiosis I progression and fidelity

Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2011