Enhanced active motion of Janus colloids at the water surface.

نویسندگان

  • Xiaolu Wang
  • Martin In
  • Christophe Blanc
  • Maurizio Nobili
  • Antonio Stocco
چکیده

We have investigated the active motion of self-propelled colloids confined at the air-water interface and explored the possibility of enhancing the directional motion of self-propelled Janus colloids by slowing down their rotational diffusion. The two dimensional motion of micron-sized silica-platinum Janus colloids has been experimentally measured by particle tracking video-microscopy at increasing concentrations of the catalytic fuel, i.e. H2O2. Compared to the motion in the bulk, a dramatic enhancement of both the persistence length of trajectories and the speed has been observed. The interplay of colloid self-propulsion, due to an asymmetric catalytic reaction occurring on the colloid, surface properties and interfacial frictions controls the enhancement of the directional movement. The slowing down of the rotational diffusion at the interface, also measured experimentally, plays a pivotal role in the control and enhancement of active motion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and 3D Tracking of Catalytic Swimming Devices.

We report a method to prepare catalytically active Janus colloids that "swim" in fluids and describe how to determine their 3D motion using fluorescence microscopy. One commonly deployed method for catalytically active colloids to produce enhanced motion is via an asymmetrical distribution of catalyst. Here this is achieved by spin coating a dispersed layer of fluorescent polymeric colloids ont...

متن کامل

A Pickering Emulsion Route to Swimming Active Janus Colloids

The field of active colloids is attracting significant interest to both enable applications and allow investigations of new collective colloidal phenomena. One convenient active colloidal system that has been much studied is spherical Janus particles, where a hemispherical coating of platinum decomposes hydrogen peroxide to produce rapid motion. However, at present producing these active colloi...

متن کامل

Optical Limiting Properties of Colloids Enhanced by Gold Nanoparticles Based on Nonlinear Refraction for Cw Laser Illumination

In this work, thermo-optical properties of gold nanoparticle colloids are studied using continuous wave (CW) laser irradiation at 532 nm. The nanoparticle colloids are fabricated by 18 ns pulsed laser ablation of pure gold plate in the distilled water. The formation of the nanoparticles has been evidenced by optical absorption spectra and transmission electron microscopy. The nonlinear optical ...

متن کامل

Pickering emulsion as a template to synthesize Janus colloids with anisotropy in the surface potential.

A versatile new concept is presented for the synthesis of Janus colloids composed of Laponite nanoclay armored poly(divinylbenzene) with an anisotropic surface potential via a double Pickering emulsion template. First, polystyrene or poly(divinylbenzene) colloids stabilized with Laponite nanoclay are synthesized via a Pickering miniemulsion approach. These nanoparticle-stabilized colloids were ...

متن کامل

The Bacterial Hydrophobin BslA is a Switchable Ellipsoidal Janus Nanocolloid.

BslA is an amphiphilic protein that forms a highly hydrophobic coat around Bacillus subtilis biofilms, shielding the bacterial community from external aqueous solution. It has a unique structure featuring a distinct partition between hydrophilic and hydrophobic surfaces. This surface property is reminiscent of synthesized Janus colloids. By investigating the behavior of BslA variants at water-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 11 37  شماره 

صفحات  -

تاریخ انتشار 2015