Locally Solid Topological Lattice-ordered Groups
نویسندگان
چکیده
Locally solid Riesz spaces have been widely investigated in the past several decades; but locally solid topological lattice-ordered groups seem to be largely unexplored. The paper is an attempt to initiate a relatively systematic study of locally solid topological lattice-ordered groups. We give both Roberts-Namioka-type characterization and Fremlin-type characterization of locally solid topological lattice-ordered groups. In particular, we show that a group topology on a lattice-ordered group is locally solid if and only if it is generated by a family of translation-invariant lattice pseudometrics. We also investigate (1) the basic properties of lattice group homomorphism on locally solid topological lattice-ordered groups; (2) the relationship between order-bounded subsets and topologically bounded subsets in locally solid topological lattice-ordered groups; (3) the Hausdorff completion of locally solid topological lattice-ordered groups.
منابع مشابه
On Locally Solid Topological Lattice Groups
Let (G, τ ) be a commutative Hausdorff locally solid lattice group. In this paper we prove the following: (1) If (G, τ ) has the A(iii)-property, then its completion (Ĝ, τ̂ ) is an order-complete locally solid lattice group. (2) If G is order-complete and τ has the Fatou property, then the order intervals of G are τ -complete. (3) If (G, τ ) has the Fatou property, then G is order-dense in Ĝ and...
متن کاملConvex $L$-lattice subgroups in $L$-ordered groups
In this paper, we have focused to study convex $L$-subgroups of an $L$-ordered group. First, we introduce the concept of a convex $L$-subgroup and a convex $L$-lattice subgroup of an $L$-ordered group and give some examples. Then we find some properties and use them to construct convex $L$-subgroup generated by a subset $S$ of an $L$-ordered group $G$ . Also, we generalize a well known result a...
متن کاملTopological Residuated Lattices
In this paper, we study the separtion axioms $T_0,T_1,T_2$ and $T_{5/2}$ on topological and semitopological residuated lattices and we show that they are equivalent on topological residuated lattices. Then we prove that for every infinite cardinal number $alpha$, there exists at least one nontrivial Hausdorff topological residuated lattice of cardinality $alpha$. In the follows, we obtain some ...
متن کاملLattice of compactifications of a topological group
We show that the lattice of compactifications of a topological group $G$ is a complete lattice which is isomorphic to the lattice of all closed normal subgroups of the Bohr compactification $bG$ of $G$. The correspondence defines a contravariant functor from the category of topological groups to the category of complete lattices. Some properties of the compactification lattice of a topological ...
متن کاملTree lattice subgroups
Let X be a locally finite tree and let G = Aut(X). Then G is naturally a locally compact group. A discrete subgroup Γ ≤ G is called an X-lattice, or a tree lattice if Γ has finite covolume in G. The lattice Γ is encoded in a graph of finite groups of finite volume. We describe several methods for constructing a pair of X-lattices (Γ′,Γ) with Γ ≤ Γ′, starting from ‘edgeindexed graphs’ (A′, i′) a...
متن کامل