Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans.
نویسندگان
چکیده
Clostridium cellulovorans produces a multienzyme cellulose-degrading complex called the cellulosome. In this study, we determined the synergistic effects on crystalline cellulose degradation by three different recombinant cellulosomes containing either endoglucanase EngE, endoglucanase EngH, or exoglucanase ExgS bound to mini-CbpA, a part of scaffolding protein CbpA. EngE, EngH, and ExgS are classified into the glycosyl hydrolase families 5, 9, and 48, respectively. The assembly of ExgS and EngH with mini-CbpA increased the activity against insoluble cellulose 1.5- to 3-fold, although no effects on activity against soluble cellulose were observed. These results indicated that mini-CbpA could help cellulase components degrade insoluble cellulose but not soluble cellulose. The mixture of the cellulosomes containing ExgS and EngH showed higher activity and synergy degrees than the other cellulosome mixtures, indicating the synergistic effect between EngH and ExgS was the most dominant effect among the three mixtures for crystalline cellulose degradation. Reactions were also performed by adding different cellulosomes in a sequential manner. When ExgS was used for the initial reaction followed by EngE and EngH, almost no synergistic effect was observed. On the other hand, when EngE or EngH was used for the first reaction followed by ExgS, synergistic effects were observed. These results indicated that the initial reactions by EngH and/or EngE promoted cellulose degradation by ExgS.
منابع مشابه
Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation.
Plant cell walls are comprised of cellulose and hemicellulose and other polymers that are intertwined, and this complex structure presents a barrier to degradation by pure cellulases or hemicellulases. In this study, we determined the synergistic effects on corn cell wall degradation by the action of cellulosomal xylanase XynA and cellulosomal cellulases from Clostridium cellulovorans. XynA min...
متن کاملDegradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA.
Clostridium cellulovorans, an anaerobic bacterium, degrades native substrates efficiently by producing an extracellular enzyme complex called the cellulosome. All cellulosomal enzyme subunits contain dockerin domains that can bind to hydrophobic domains termed cohesins which are repeated nine times in CbpA, the nonenzymatic scaffolding protein of C. cellulovorans cellulosomes. In this study, th...
متن کاملSynergistic interaction of Clostridium cellulovorans cellulosomal cellulases and HbpA.
Clostridium cellulovorans, an anaerobic bacterium, produces a small nonenzymatic protein called HbpA, which has a surface layer homology domain and a type I cohesin domain similar to those found in the cellulosomal scaffolding protein CbpA. In this study, we demonstrated that HbpA could bind to cell wall fragments from C. cellulovorans and insoluble polysaccharides and form a complex with cellu...
متن کامل10-2. Clostridium cellulovorans cellulosome and analysis by Bacillus subtilis heterologous host system
Studies about Clostridia have focused especially on Pathogens or cellulases. In this chapter we focus on Clostridium cellulovorans, a non-pathogenic Clostridium. C. cellulovorans is a cellulose degrader and produces an enzymatic complex called “cellulosome” in which several cellulases are bound tightly to a scaffolding protein. In addition to cellulosomes, C. cellulovorans produces free cellula...
متن کاملUnique contribution of the cell wall-binding endoglucanase G to the cellulolytic complex in Clostridium cellulovorans.
The cellulosomes produced by Clostridium cellulovorans are organized by the specific interactions between the cohesins in the scaffolding proteins and the dockerins of the catalytic components. Using a cohesin biomarker, we identified a cellulosomal enzyme which belongs to the glycosyl hydrolase family 5 and has a domain of unknown function 291 (DUF291) with functions similar to those of the su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 184 18 شماره
صفحات -
تاریخ انتشار 2002