UV-assisted room-temperature chemiresistive NO2 sensor based on TiO2 thin film.

نویسندگان

  • Ting Xie
  • Nichole Sullivan
  • Kristen Steffens
  • Baomei Wen
  • Guannan Liu
  • Ratan Debnath
  • Albert Davydov
  • Romel Gomez
  • Abhishek Motayed
چکیده

TiO2 thin film based, chemiresistive sensors for NO2 gas which operate at room temperature under ultraviolet (UV) illumination have been demonstrated in this work. The rf-sputter deposited and post-annealed TiO2 thin films have been characterized by atomic force microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction to obtain surface morphology, chemical state, and crystal structure, respectively. UV-vis absorption spectroscopy and Tauc plots show the optical properties of the TiO2 films. Under UV illumination, the NO2 sensing performance of the TiO2 films shows a reversible change in resistance at room-temperature. The observed change in electrical resistivity can be explained by the modulation of surface-adsorbed oxygen. This work is the first demonstration of a facile TiO2 sensor for NO2 analyte that operates at room-temperature under UV illumination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study of Two Different TiO2 Film Sensors on Response to H2 under UV Light and Room Temperature

An anatase TiO₂ film sensor was prepared by a facile in-situ method on the interdigitated Au electrode deposited on the alumina substrate. The structure, morphology and the optical properties of the in-situ TiO₂ film sensor were characterized by X-ray diffraction, Scanning Electron Microscopy, and UV-vis diffuse reflectance spectra. The photo-assisted gas sensitivities of the prepared film towa...

متن کامل

UV Light Activation of TiO2-Doped SnO2 Thick Film for Sensing Ethanol at Room Temperature

TiO2-doped SnO2 nanopowder is synthesized via a sol-gel method and characterized by atomic force microscopy and X-ray diffraction. Using this nanopowder, we have fabricated a novel semiconductor gas sensor that is sensitive to UV light illumination. We find that gas-sensing properties of TiO2-doped SnO2 sensor can be enhanced significantly under the exposure of UV light. The sensor exhibits a h...

متن کامل

The Effect of Monolayer Graphene on the UV Assisted NO2 Sensing and Recovery at Room Temperature

In the present study, UV light induced desorption of nitrogen dioxide (NO2) on pristine graphene based gas sensor is used to improve the sensing performance. Compared to the sample without UV light exposure, the response is 12%, 18% and 21% for NO2 concentrations of 1, 3 and 5 ppm. In addition, the recovery could be speeded up by UV irradiation. The sensor shows good behavior of repeatability w...

متن کامل

Ultrasensitive, Real-time and Discriminative Detection of Improvised Explosives by Chemiresistive Thin-film Sensory Array of Mn2+ Tailored Hierarchical ZnS

A simple method combing Mn(2+) doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn(2+) doping. The responses of the sensors based on ZnS...

متن کامل

Visible photoassisted room-temperature oxidizing gas-sensing behavior of Sn2S3 semiconductor sheets through facile thermal annealing

Well-crystallized Sn2S3 semiconductor thin films with a highly (111)-crystallographic orientation were grown using RF sputtering. The surface morphology of the Sn2S3 thin films exhibited a sheet-like feature. The Sn2S3 crystallites with a sheet-like surface had a sharp periphery with a thickness in a nanoscale size, and the crystallite size ranged from approximately 150 to 300 nm. Postannealing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of alloys and compounds

دوره 653  شماره 

صفحات  -

تاریخ انتشار 2015