Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma.
نویسندگان
چکیده
PURPOSE To demonstrate the capability of SD-OCT to measure macular retinal ganglion cell-inner plexiform layer (GCIPL) thickness and to assess its reproducibility in glaucomatous eyes. METHODS Fifty-one glaucomatous eyes (26 mild, 11 moderate, 14 severe) of 51 patients underwent macular scanning using the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) macula 200×200 acquisition protocol. Five scans were obtained on 5 days within 2 months. The ganglion cell analysis (GCA) algorithm was used to detect the macular GCIPL and to measure the thickness of the overall average, minimum, superotemporal, superior, superonasal, inferonasal, inferior, and inferotemporal GCIPL. The reproducibility of the measurements was evaluated with intraclass correlation coefficients (ICCs), coefficients of variation (COVs), and test-retest standard deviations (TRTSDs). RESULTS Segmentation and measurement of GCIPL thickness were successful in 50 of 51 subjects. All ICCs ranged between 0.94 and 0.98, but ICCs for average and superior GCIPL parameters (0.97-0.98) were slightly higher than for inferior GCIPL parameters (0.94-0.97). All COVs were <5%, with 1.8% for average GCIPL and COVs for superior GCIPL parameters (2.2%-3.0%) slightly lower than those for inferior GCIPL parameters (2.5%-3.6%). The TRTSD was lowest for average GCIPL (1.16 μm) and varied from 1.43 to 2.15 μm for sectoral GCIPL CONCLUSIONS: The Cirrus HD-OCT GCA algorithm can successfully segment macular GCIPL and measure GCIPL thickness with excellent intervisit reproducibility. Longitudinal monitoring of GCIPL thickness may be possible with Cirrus HD-OCT for assessing glaucoma progression.
منابع مشابه
Retinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography
Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...
متن کاملSegmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: Dendritic degeneration of retinal ganglion cell
PURPOSE To evaluate the changes of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and ganglion cell-inner plexiform layer (GCIPL) thicknesses and compare structure-function relationships of 4 retinal layers using spectral-domain optical coherence tomography (SD-OCT) in macular region of glaucoma patients. METHODS In cross-sectional study, a total of ...
متن کاملDiagnostic Ability of Macular Ganglion Cell Inner Plexiform Layer Measurements in Glaucoma Using Swept Source and Spectral Domain Optical Coherence Tomography
PURPOSE To evaluate the diagnostic ability of macular ganglion cell and inner plexiform layer measurements in glaucoma, obtained using swept source (SS) and spectral domain (SD) optical coherence tomography (OCT) and to compare to circumpapillary retinal nerve fiber layer (cpRNFL) thickness measurements. METHODS The study included 106 glaucomatous eyes of 80 subjects and 41 eyes of 22 healthy...
متن کاملRepeatability of Perimacular Ganglion Cell Complex Analysis with Spectral-Domain Optical Coherence Tomography
Purpose. To assess the repeatability of spectral-domain optical coherence tomography to measure macular and perimacular ganglion cell complex thicknesses and compare retinal ganglion cell parameters between algorithms. Methods. Ninety-two nonglaucomatous eyes from 92 participants underwent macular and perimacular ganglion cell complex thickness measurement using OCT-HS100 Glaucoma 3D algorithm ...
متن کاملMeasurement of macular structure-function relationships using spectral domain-optical coherence tomography (SD-OCT) and pattern electroretinograms (PERG)
BACKGROUND Retinal ganglion cell (RGC) death is a common cause of loss of vision during glaucoma. Pattern electroretinogram (PERG) is an objective measure of the central retinal function that correlates with macular GCL thickness. The aim of this study is to determine possible relationships between the N95 amplitude of pattern electroretinogram (PERGamp) and macular ganglion cell/inner plexifor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 52 11 شماره
صفحات -
تاریخ انتشار 2011