Weak laws in geometric probability
نویسندگان
چکیده
Using a coupling argument, we establish a general weak law of large numbers for functionals of binomial point processes in d-dimensional space, with a limit that depends explicitly on the (possibly non-uniform) density of the point process. The general result is applied to the minimal spanning tree, the k-nearest neighbors graph, the Voronoi graph, and the sphere of influence graph. Functionals of interest include total edge length with arbitrary weighting, number of vertices of specifed degree, and number of components. We also obtain weak laws for functionals of marked point processes, including statistics of Boolean models.
منابع مشابه
Laws of Large Numbers for Random Linear
The computational solution of large scale linear programming problems contains various difficulties. One of the difficulties is to ensure numerical stability. There is another difficulty of a different nature, namely the original data, contains errors as well. In this paper, we show that the effect of the random errors in the original data has a diminishing tendency for the optimal value as the...
متن کاملOperator geometric stable laws
Operator geometric stable laws are the weak limits of operator normed and centered geometric random sums of independent, identically distributed random vectors. They generalize operator stable laws and geometric stable laws. In this work we characterize operator geometric stable distributions, their divisibility and domains of attraction, and present their application to finance. Operator geome...
متن کاملThe weak and strong laws of large numbers
converges in probability to 0. A strong law of large numbers is a statement that (1) converges almost surely to 0. Thus, if the hypotheses assumed on the sequence of random variables are the same, a strong law implies a weak law. We shall prove the weak law of large numbers for a sequence of independent identically distributed L random variables, and the strong law of large for the same hypothe...
متن کاملThe Laws of Large Numbers Compared
Probability Theory includes various theorems known as Laws of Large Numbers; for instance, see [Fel68, Hea71, Ros89]. Usually two major categories are distinguished: Weak Laws versus Strong Laws. Within these categories there are numerous subtle variants of differing generality. Also the Central Limit Theorems are often brought up in this context. Many introductory probability texts treat this ...
متن کاملThe p−sphere and the geometric substratum of power law probability distributions
Links between power law probability distributions and marginal distributions of uniform laws on p-spheres in R show that a mathematical derivation of the Boltzmann-Gibbs distribution necessarily passes through power law ones. Results are also given that link parameters p and n to the value of the nonextensivity parameter q that characterizes these power laws in the context of non-extensive stat...
متن کامل