Asymptotically Constant-Risk Predictive Densities When the Distributions of Data and Target Variables Are Different

نویسندگان

  • Keisuke Yano
  • Fumiyasu Komaki
چکیده

We investigate the asymptotic construction of constant-risk Bayesian predictive densities under the Kullback–Leibler risk when the distributions of data and target variables are different and have a common unknown parameter. It is known that the Kullback–Leibler risk is asymptotically equal to a trace of the product of two matrices: the inverse of the Fisher information matrix for the data and the Fisher information matrix for the target variables. We assume that the trace has a unique maximum point with respect to the parameter. We construct asymptotically constant-risk Bayesian predictive densities using a prior depending on the sample size. Further, we apply the theory to the subminimax estimator problem and the prediction based on the binary regression model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotically minimax Bayes predictive densities

fθ log (fθ/f̂) is used to examine various ways of choosing prior distributions; the principal type of choice studied is minimax. We seek asymptotically least favorable predictive densities for which the corresponding asymptotic risk is minimax. A result resembling Stein’s paradox for estimating normal means by the maximum likelihood holds for the uniform prior in the multivariate location family...

متن کامل

Investigating the effects of different kernels used for CT image reconstruction on dose distributions in treatment planning of kidney cancer radiotherapy

Introduction: The quality of CT images used for treatment planning of cancer patients is an important issue in accurate outlining of the tumor volume and organs at risk. Different kernels in CT scanner systems are available for improving the image quality. Applying these kernels  on   CT  images  will  change   the   CT  numbers  and  electron   density   of   tissues, conse...

متن کامل

طراحی شبکه عصبی مصنوعی برای پیش‌بینی توأم سندرم متابولیک و شاخص مقاومت به انسولین (HOMA-IR): مطالعه قند و لیپید تهران

  Background & Objective: Mixed outcomes arise when, in a multivariate model, response variables measured on different scales such as binary and continuous. In a bivariate modeling, when there are mixed response variables, the common methods in classic statistics have shortcomings. This study aimed at designing an appropriate ANN model for modeling and predicting the bivariate mixed responses i...

متن کامل

Investigating the Correlation of Selected Banks with Dynamic Conditional Correlation (DCC) Model and Identifying Systemically Important Banks with Conditional Value at Risk and Shapley Value Method

Systemic risk arises from simultaneous movement or correlations between market segments; Thus, systemic risk occurs when there is a high correlation between the risks and crises of different market segments or institutions operating in the economy, or when the risks of different segments in a market segment or a country are related to other segments and other countries. This paper presents a me...

متن کامل

A Survey of Predictive Modelling under Imbalanced Distributions

Many real world data mining applications involve obtaining predictive models using data sets with strongly imbalanced distributions of the target variable. Frequently, the least common values of this target variable are associated with events that are highly relevant for end users (e.g. fraud detection, unusual returns on stock markets, anticipation of catastrophes, etc.). Moreover, the events ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014