Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy
نویسندگان
چکیده
The key properties of microalgal biodiesel are largely determined by the composition of its fatty acid methyl esters (FAMEs). The gas chromatography (GC) based techniques for fatty acid analysis involve energy-intensive and time-consuming procedures and thus are less suitable for high-throughput screening applications. In the present study, a novel quantification method for microalgal fatty acids was established based on the near-infrared spectroscopy (NIRS) technique. The lyophilized cells of oleaginous Chlorella containing different contents of lipids were scanned by NIRS and their fatty acid profiles were determined by GC-MS. NIRS models were developed based on the chemometric correlation of the near-infrared spectra with fatty acid profiles in algal biomass. The optimized NIRS models showed excellent performances for predicting the contents of total fatty acids, C16:0, C18:0, C18:1 and C18:3, with the coefficient of determination (R2) being 0.998, 0.997, 0.989, 0.991 and 0.997, respectively. Taken together, the NIRS method established here bypasses the procedures of cell disruption, oil extraction and transesterification, is rapid, reliable, and of great potential for high-throughput applications, and will facilitate the screening of microalgal mutants and optimization of their growth conditions for biodiesel production.
منابع مشابه
Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy
BACKGROUND Oleaginous fungi can accumulate lipids by utilizing a wide range of waste substrates. They are an important source for the industrial production of omega-6 polyunsaturated fatty acids (gamma-linolenic and arachidonic acid) and have been suggested as an alternative route for biodiesel production. Initial research steps for various applications include the screening of fungi in order t...
متن کاملIdentification and Functional Analysis of Delta-9 Desaturase, a Key Enzyme in PUFA Synthesis, Isolated from the Oleaginous Diatom Fistulifera
Oleaginous microalgae are one of the promising resource of nonedible biodiesel fuel (BDF) feed stock alternatives. Now a challenge task is the decrease of the long-chain polyunsaturated fatty acids (PUFAs) content affecting on the BDF oxidative stability by using gene manipulation techniques. However, only the limited knowledge has been available concerning the fatty acid and PUFA synthesis pat...
متن کاملReduction of Chemical and Biological Oxygen Demands from Oil Wastes via Oleaginous Fungi: An Attempt to Convert Food by Products to Essential Fatty Acids
Background: The production of waste pollutants has become a major problem for many food and oil industries. However, oil wastes can provide alternative substrates for industry, which could help to solve environmental pollution problems. Furthermore, oil wastes can be used as substrates to produce unsaturated fatty acids, which are important for health. Objectives: The production of fatty acids ...
متن کاملFourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeasts
BACKGROUND Oleaginous microorganisms, such as different yeast and algal species, can represent a sustainable alternative to plant oil for the production of biodiesel. They can accumulate fatty acids (FA) up to 70% of their dry weight with a predominance of (mono)unsaturated species, similarly to what plants do, but differently from animals. In addition, their growth is not in competition either...
متن کاملAn Extended Approach to Quantify Triacylglycerol in Microalgae by Characteristic Fatty Acids
Microalgae represent a third generation biofuel feedstock due to their high triacylglycerol (TAG) content under adverse environmental conditions. Microalgal TAG resides in a single cell and serves as a lipid class mixed with complicated compositions. We previously showed that TAG possessed characteristic fatty acids (CFAs) for quantification and was linearly correlated with the relative abundan...
متن کامل