Implications of life-history transitions on the population genetic structure of the toxigenic marine dinoflagellate Alexandrium tamarense.
نویسندگان
چکیده
Genotypic or phenotypic markers for characterization of natural populations of marine microalgae have typically addressed questions regarding differentiation among populations, usually with reference to a single or few clonal isolates. Based upon a large number of contemporaneous isolates from the same geographical population of the toxigenic species Alexandrium tamarense from the North Sea, we uncovered significant genetic substructure and low but significant multilocus linkage disequilibrium (LD) within the planktonic population. Between the alternative molecular genotyping approaches, only amplified fragment length polymorphism (AFLP) revealed cryptic genetic population substructure by Bayesian clustering, whereas microsatellite markers failed to yield concordant patterns. Both markers, however, gave evidence for genetic differentiation of population subgroups as defined by AFLP. A considerable portion of multilocus LD could be attributed to population subdivision. The remaining LD within population subgroups is interpreted as an indicator of frequency shifts of clonal lineages during vegetative growth of planktonic populations. Phenotypic characters such as cellular content and composition of neurotoxins associated with paralytic shellfish poisoning (PSP) and allelochemical properties may contribute to intra- or inter-annual differentiation of planktonic populations, if clonal lineages that express these characters are selectively favoured. Nevertheless, significant phenotypic differentiation for these characters among the genetically differentiated subgroups was only detected for PSP toxin content in two of the four population subgroups. By integrating the analysis of phenotypic and genotypic characteristics, we developed a conceptual population genetic model to explain the importance of life-cycle dynamics and transitions in the evolutionary ecology of these dinoflagellates.
منابع مشابه
Biodiversity of the Symbiotic Bacteria Asso- ciated with Toxic Dinoflagellate Alexandrium tamarense
Paralytic shellfish poisoning (PSP) toxins are potent neurotoxins mainly produced by dinoflagellates and being concentrated in bivalves through food web transfer. Increasing number of findings of toxin-producing bacteria in the cells of dinoflagellate such as Alexandrium tamarense supports the hypothesis of the bacterial origin of PSP toxins. Evidence that there are specific symbiosis bacterial...
متن کاملBiodiversity of the Symbiotic Bacteria Associated with Toxic Marine Dinoflagellate Alexandrium tamarense
Paralytic shellfish poisoning (PSP) toxins are potent neurotoxins mainly produced by dinoflagellates and being concentrated in bivalves through food web transfer. Increasing number of findings of toxin-producing bacteria in the cells of dinoflagellate such as Alexandriumtamarense supports the hypothesis of the bacterial origin of PSP toxins. Evidence that there are specific symbiosis bacterial ...
متن کاملIntraspecific facilitation by allelochemical mediated grazing protection within a toxigenic dinoflagellate population.
Dinoflagellates are a major cause of harmful algal blooms (HABs), with consequences for coastal marine ecosystem functioning and services. Alexandrium fundyense (previously Alexandrium tamarense) is one of the most abundant and widespread toxigenic species in the temperate Northern and Southern Hemisphere and produces paralytic shellfish poisoning toxins as well as lytic allelochemical substanc...
متن کاملA Novel Algicide: Evidence of the Effect of a Fatty Acid Compound from the Marine Bacterium, Vibrio sp. BS02 on the Harmful Dinoflagellate, Alexandrium tamarense
Alexandrium tamarense is a notorious bloom-forming dinoflagellate, which adversely impacts water quality and human health. In this study we present a new algicide against A. tamarense, which was isolated from the marine bacterium Vibrio sp. BS02. MALDI-TOF-MS, NMR and algicidal activity analysis reveal that this compound corresponds to palmitoleic acid, which shows algicidal activity against A....
متن کاملDiscovery of an algicidal compound from Brevibacterium sp. BS01 and its effect on a harmful algal bloom-causing species, Alexandrium tamarense
Blooms of the dinoflagellate Alexandrium tamarense have become worldwide phenomena and have detrimental impacts on aquatic ecosystems and human health. In this study, a culture supernatant of the marine actinomycete BS01 exerted a strong algicidal effect on A. tamarense (ATGD98-006). The target algicide from BS01 was separated by adsorption chromatography and identified by MALDI-TOF-MS and NMR ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 18 10 شماره
صفحات -
تاریخ انتشار 2009