A New Class of High-Order Energy Stable Flux Reconstruction Schemes
نویسندگان
چکیده
The flux reconstruction approach to high-order methods is robust, efficient, simple to implement, and allows various high-order schemes, such as the nodal discontinuous Galerkin method and the spectral difference method, to be cast within a single unifying framework. Utilizing a flux reconstruction formulation, it has been proved (for onedimensional linear advection) that the spectral difference method is stable for all orders of accuracy in a norm of Sobolev type, provided that the interior flux collocation points are located at zeros of the corresponding Legendre polynomials. In this article the aforementioned result is extended in order to develop a new class of one-dimensional energy stable flux reconstruction schemes. The energy stable schemes are parameterized by a single scalar quantity, which if chosen judiciously leads to the recovery of various well known high-order methods (including a particular nodal discontinuous Galerkin method and a particular spectral difference method). The analysis offers significant insight into why certain flux reconstruction schemes are stable, whereas others are not. Also, from a practical standpoint, the analysis provides a simple prescription for implementing an infinite range of energy stable high-order methods via the intuitive flux reconstruction approach.
منابع مشابه
A New Class of High-Order Energy Stable Flux Reconstruction Schemes for Triangular Elements
The flux reconstruction (FR) approach allows various well-known high-order schemes, such as collocation based nodal discontinuous Galerkin (DG) methods and spectral difference (SD) methods, to be cast within a single unifying framework. Recently, the authors identified a new class of FR schemes for 1D conservation laws, which are simple to implement, efficient and guaranteed to be linearly stab...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملApplication of High-Order Energy Stable Flux Reconstruction Schemes to the Euler Equations
The authors recently identified an infinite range of high-order energy stable flux reconstruction (FR) schemes in 1D and on triangular elements in 2D. The new flux reconstruction schemes are linearly stable for all orders of accuracy in a norm of Sobolev type. They are parameterized by a single scalar quantity, which if chosen judiciously leads to the recovery of various well known high-order m...
متن کاملSimulation of the Taylor–Green Vortex Using High-Order Flux Reconstruction Schemes
In this paper, the ability of high-order flux reconstruction numerical schemes to perform accurate and stable computations of compressible turbulent flows on coarsemeshes is investigated. Twonew flux reconstruction schemes, which are optimized for wave dissipation and dispersion properties, are compared to the nodal discontinuous Galerkin and spectral difference methods recovered via the energy...
متن کاملSimulation of the Compressible Taylor Green Vortex using High-Order Flux Reconstruction Schemes
In this paper, we investigate the ability of high-order Flux Reconstruction (FR) numerical schemes to perform accurate and stable computations of compressible turbulent flows on coarse meshes. Two new FR schemes, which are optimized for wave dissipation and dispersion properties, are compared to the nodal Discontinuous Galerkin and Spectral Difference methods recovered via the Energy-Stable FR ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 47 شماره
صفحات -
تاریخ انتشار 2011