Experiments on Magnesium Aerosol Combustion in Microgravity

نویسندگان

  • EDWARD L. DREIZIN
  • VERN K. HOFFMANN
چکیده

An experimental study of the combustion of an aerosol of coarse magnesium particles in microgravity is reported. Particles with sizes between 180–250 mm were aerosolized in a 0.5-L combustion chamber and ignited in a constant-pressure, microgravity environment. Two flame images were produced simultaneously using interference filters separating adjacent MgO and black body radiation bands at 500 and 510 nm, respectively. The characteristic MgO radiation was used as an indicator of the gas-phase combustion. Comparison of the two filtered flame images showed that preheat and combustion zones can be distinguished in the flame. Experiments have also shown that in microgravity the flame speed depends on the initial particle speeds varied in the range of 0.02–0.4 m/s. This dependence is, most likely, due to the role the moving particles play in the heat transfer processes. Product analyses showed an oxide coating on the surfaces of particles collected after experiments in which the flame speeds were higher than 0.1 m/s. No oxide coating was detected in the products collected after experiments in which a slower flame propagation was observed. However, the particles collected after such experiments contained significant amounts of dissolved oxygen. Strong MgO radiation and production of dense MgO smoke clouds were observed in all the experiments, including those with the slowly propagating flames. Therefore, it has been suggested that the MgO produced in the vapor-phase flame is not the primary source of the MgO coating found on the burnt particle surfaces. An alternative mechanism of forming the oxide coating is, consistent with the earlier single metal particle combustion studies, via the formation of a metal–oxygen solution followed by a phase separation occurring within the burning particles. © 2000 by The Combustion Institute

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constant Pressure Combustion of Aerosol of Coarse Magnesium Particles in Microgravity

The combustion mechanisms of clouds of metal particles are addressed in this research. A microgravity environment was used to create a “stationary model aerosol” consisting of relatively large (100–300 mm diameter), initially motionless particles. The development of individual particle flames, motion of individual particles, and overall aerosol combustion process could be observed simultaneousl...

متن کامل

Some New Experimental Observations of Combustion Characteristics near Lean Limit in a Tube under Microgravity

Experiments have been carried out with extremely lean, quiescent propane-air mixtures to examine the behavior of irregular flame propagation and to examine the lean limits of flame propagation in a tube under microgravity. The microgravity technique achieved in a freely falling chamber is employed because the realizations of symmetrical flame propagations in a tube are possible. Experimental co...

متن کامل

Experimental Study of Aluminum Particle Flame Evolution in Normal and Micro-Gravity

This research addresses the flame structure of single aluminum particles burning in air with the emphasis on the transition from spherically symmetric to non-symmetric combustion regime. The unique feature of this work is that free motionless aluminum particles were produced and ignited in both normal and microgravity environments. That allowed us to observe whether the particle flame non-symme...

متن کامل

High-temperature phases in ternary Zr–O–N systems

Zirconium aerosol was ignited and burned in atmospheric pressure air in microgravity using a 2.2-s drop tower. Combustion products were collected and analyzed using electron microscopy. The elemental composition analyses indicated that combustion product compositions fell along two linear traces on a ternary Zr–O–N diagram. Currently, the equilibrium Zr–O–N phases are not characterized at tempe...

متن کامل

Quantitative Measurement of Oxygen in Microgravity Combustion

A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000