Hybrid Photonic Integration on a Polymer Platform
نویسندگان
چکیده
To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard), which provides flexible optical input/ouptut interfaces (I/Os) that allow robust coupling of indium phosphide (InP)-based active components, passive insertion of thin-film-based OPEN ACCESS Photonics 2015, 2 1006 optical elements, and on-chip attachment of optical fibers. This work reviews the recent progress of our polyboard platform. On the fundamental level, multi-core waveguides and polymer/silicon nitride heterogeneous waveguides have been fabricated, broadening device design possibilities and enabling 3D photonic integration. Furthermore, 40-channel optical line terminals and compact, bi-directional optical network units have been developed as highly functional, low-cost devices for the wavelength division multiplexed passive optical network. On a larger scale, thermo-optic elements, thin-film elements and an InP gain chip have been integrated on the polyboard to realize a colorless, dual-polarization optical 90° hybrid as the frontend of a coherent receiver. For high-end applications, a wavelength tunable 100Gbaud transmitter module has been demonstrated, manifesting the joint contribution from the polyboard technology, high speed polymer electro-optic modulator, InP driver electronics and ceramic electronic interconnects.
منابع مشابه
Polymer Based Platform for Hybrid Photonic Integration
Integration Platform Session: The paper presents on overview of a polymer based hybrid integration platform developed at HHI. The crucial building blocks involved are described, and examples of recently developed components are given. Keywordspolymer waveguides; passive fiber coupling; ultrathin film elements; multiplexer; transceiver; PSK receivers; tunable laser
متن کاملPhotonic integrated circuits based on silica and polymer PLC [8628-6]
Various methods of hybrid integration of photonic circuits are discussed focusing on merits and challenges. Material platforms discussed in this report are mainly polymer and silica. We categorize the hybridization methods using silica and polymer waveguides into two types, chip-to-chip and on-chip integration. General reviews of these hybridization technologies from the past works are reviewed...
متن کاملBiosensing microsystem platform based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers
We have achieved the design, fabrication and packaging of microfluidic networks with photonic sensors for novel labon-chip platforms which incorporate the on-chip biosensing detection. As sensors, we used an integrated Mach-Zehnder interferometer (MZI) based on TIR waveguides (Si/SiO2/Si3N4) of micro/nanodimensions for evanescent field detection of biomolecular interactions onto the sensing are...
متن کاملManipulating Bloch surface waves in 2D: a platform concept-based flat lens
At the end of the 1970s, it was confirmed that dielectric multilayers can sustain Bloch surface waves (BSWs). However, BSWs were not widely studied until more recently. Taking advantage of their high-quality factor, sensing applications have focused on BSWs. Thus far, no work has been performed to manipulate and control the natural surface propagations in terms of defined functions with two-dim...
متن کاملComplex monolithic and InP hybrid integration on high bandwidth electro-optic polymer platform.
We report on the monolithic integration of multimode interference couplers, Bragg gratings, and delay-line interferometers on an electro-optic polymer platform capable of modulation directly at 100 Gb/s. We also report on the hybrid integration of InP active components with the polymer structure using the butt-coupling technique. Combining the passive and the active components, we demonstrate a...
متن کامل