Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways.

نویسندگان

  • Takeshi Yoshihara
  • Moritoshi Iino
چکیده

We identified the gene responsible for three allelic lazy1 mutations of Japonica rice (Oryza sativa L.) by map-based cloning, complementation and RNA interference. Sequence analysis and database searches indicated that the wild-type gene (LAZY1) encodes a novel and unique protein (LAZY1) and that rice has no homologous gene. Two lazy1 mutants were LAZY1 null. Confirming and advancing the previously reported results on lazy1 mutants, we found the following. (i) Gravitropism is impaired, but only partially, in lazy1 coleoptiles. (ii) Circumnutation, observed in dark-grown coleoptiles, is totally absent from lazy1 coleoptiles. (iii) Primary roots of lazy1 mutants show normal gravitropism and circumnutation. (iv) LAZY1 is expressed in a tissue-specific manner in gravity-sensitive shoot tissues (i.e. coleoptiles, leaf sheath pulvini and lamina joints) and is little expressed in roots. (v) The gravitropic response of lazy1 coleoptiles is kinetically separable from that absent from lazy1 coleoptiles. (vi) Gravity-induced lateral translocation of auxin, found in wild-type coleoptiles, does not occur in lazy1 coleoptiles. Based on the genetic and physiological evidence obtained, it is concluded that LAZY1 is specifically involved in shoot gravitropism and that LAZY1-dependent and -independent signaling pathways occur in coleoptiles. It is further concluded that, in coleoptiles, only the LAZY1-dependent gravity signaling involves asymmetric distribution of auxin between the two lateral halves and is required for circumnutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots.

During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1/LAZY...

متن کامل

Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis.

Tiller angle, a key agronomic trait for achieving ideal plant architecture and increasing grain yield, is regulated mainly by shoot gravitropism. Strigolactones (SLs) are a group of newly identified plant hormones that are essential for shoot branching/rice tillering and have further biological functions as yet undetermined. Through screening for suppressors of lazy1 (sols), a classic rice muta...

متن کامل

Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response.

Auxin is a plant hormone that plays key roles in both shoot gravitropism and inflorescence development. However, these two processes appear to be parallel and to be regulated by distinct players. Here, we report that the maize (Zea mays) prostrate stem1 mutant, which is allelic to the classic mutant lazy plant1 (la1), displays prostrate growth with reduced shoot gravitropism and defective inflo...

متن کامل

Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice.

Tiller angle and leaf angle are two important components of rice (Oryza sativa) plant architecture that play a crucial role in determining grain yield. Here, we report the cloning and characterization of the Loose Plant Architecture1 (LPA1) gene in rice, the functional ortholog of the AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene in Arabidopsis (Arabidopsis thaliana). LPA1 regulates tiller angle and ...

متن کامل

Loose Plant Architecture1, an INDETERMINATE DOMAIN Protein Involved in Shoot Gravitropism, Regulates Plant Architecture in Rice1[W]

Tiller angle and leaf angle are two important components of rice (Oryza sativa) plant architecture that play a crucial role in determining grain yield. Here, we report the cloning and characterization of the Loose Plant Architecture1 (LPA1) gene in rice, the functional ortholog of the AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene in Arabidopsis (Arabidopsis thaliana). LPA1 regulates tiller angle and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 48 5  شماره 

صفحات  -

تاریخ انتشار 2007