Thermal barrier Analysis in Diesel
نویسندگان
چکیده
The specific outputs of some diesel engine applications have produced thermal loadings in excess of the strength of typical aluminium piston alloys. Functionally graded coatings are used to increase performances of high temperature components in diesel engines. Thermal barrier coating are being evaluated to return the components durability to acceptable levels as well as providing a means of lowering heat rejection. This paper discusses the use of a finite element model to analyze these thermal barrier coating systems, including the impact of material properties, coating thickness, residual stress and boundary conditions. These coatings consist of a transition from the metallic bond layer to cermet and from cermet to the ceramic layer. Thermal analyses were employed to deposit metallic, cermet and ceramic powders such as NiCrAl, NiCrAl+MgZrO3 and MgZrO3 on the substrate. The numerical results of AlSi and steel pistons are compared with each other. It was shown that the maximum surface temperature of the functional graded coating AlSi alloy and steel pistons was increased by 28% and 17%, respectively. In this study, thermal behavior of functional graded coatings on AlSi and steel piston materials was investigated by means of using a commercial code, namely ANSYS
منابع مشابه
Thermal barrier coating effect on stress and temperature distribution of diesel engines cylinder heads using a two-layer viscoelasticity model with considering viscosity effects
This paper presents finite element analysis (FEA) of a coated and uncoated cylinder heads of a diesel engine to examine the distribution of temperature and stress. A thermal barrier coating system was applied on the combustion chamber of the cylinder heads, consists of two-layer systems: a ceramic top coat (TC), made of yttria stabilized zirconia (YSZ), ZrO2-8%Y2O3 and also a metallic bond coat...
متن کاملA review of thermal barrier coating effects on diesel engine performance and components lifetime
In the present paper, a complete literatures review of thermal barrier coating applications in diesel engines is performed to select a proper type and to find coating effects. The coating system has effects on the fuel consumption, the power and the combustion efficiency, pollution contents and the fatigue lifetime of engine components. Usually there are several beneficial influences by appl...
متن کاملFailure Mechanisms Investigation in Thermal Barrier Coatings under Isothermal and Non-sothermal Fatigue Loadings using Design of Experiments
In this article, failure and fracture mechanisms in an aluminum alloy (which has been used in diesel internal combustion engines), with and without ceramic thermal barrier coatings, have been investigated under isothermal and non-isothermal fatigue loadings. In this research, the base material is an aluminum-silicon-magnesium alloy and the thermal barrier coating includes a metallic bond coat l...
متن کاملThermo-mechanical analysis of a coated cylinder head
This paper presents finite element analysis (FEA) of a coated and uncoated cylinder heads of a diesel engine to examine the distribution of temperature and stress. A thermal barrier coating system was applied on the combustion chamber of the cylinder heads, consists of two-layer systems: a ceramic top coat (TC), made of yttria stabilized zirconia (YSZ), ZrO2-8%Y2O3 and also a metallic bond coat...
متن کاملIs Thermal Barrier Coating for Low Heat Rejection in SI Engines or Diesel Engines?
The diesel / gasoline engine rejects about two thirds of the heat energy of the fuel, one-third to the coolant, and one third to the exhaust, leaving only about one-third as useful power output. Theoretically if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. Low Heat Rejection (LHR) engines aim...
متن کامل