Exact solution of a stochastic SIR model

نویسندگان

  • Gunter M. Schutz
  • Marian Brandau
  • Steffen Trimper
چکیده

Abstract The susceptible-infectious-recovered (SIR) model describes the evolution of three species of individuals which are subject to an infection and recovery mechanism. A susceptible S can become infectious with an infection rate β by an infectious Itype provided that both are in contact. The Itype may recover with a rate γ and from then on stay immune. Due to the coupling between the different individuals, the model is nonlinear and out of equilibrium. We adopt a stochastic individual-based description where individuals are represented by nodes of a graph and contact is defined by the links of the graph. Mapping the underlying Master equation into a quantum formulation in terms of spin operators, the hierarchy of evolution equations can be solved exactly for arbitrary initial conditions on a linear chain. In case of uncorrelated random initial conditions the exact time evolution for all three individuals of the SIR model is given analytically. Depending on the initial conditions and reaction rates β and γ, the I-population may increase initially before decaying to zero. Due to fluctuations, isolated regions of susceptible individuals evolve and unlike in the standard mean-field SIR model one observes a finite stationary distribution of the S-type even for large population size. The exact results for the ensemble averaged population size are compared with simulations for single realizations of the process and also with standard mean field theory which is expected to be valid on large fully-connected graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AIRLINE STOCHASTIC CAPACITY ALLOCATION BY APPLYING REVENUE MANAGEMENT

To formulate a single-leg seat inventory control problem in an airline ticket sales system, the concept and techniques of revenue management are applied in this research. In this model, it is assumed the cabin capacity is stochastic and hence its exact size cannot be forecasted in advance, at the time of planning. There are two groups of early-reserving and late-purchasing customers demanding t...

متن کامل

(Q,r) Stochastic Demand Inventory Model With Exact Number of Cycles

In most stochastic inventory models, such as continuous review models and periodic review models, it has been assumed that the stockout period during a cycle is small enough to be neglected so that the average number of cycles per year can be approximated as D/Q, where D is the average annual demand and Q is the order quantity. This assumption makes the problem more tactable, but it should not ...

متن کامل

(Q,r) Stochastic Demand Inventory Model With Exact Number of Cycles

In most stochastic inventory models, such as continuous review models and periodic review models, it has been assumed that the stockout period during a cycle is small enough to be neglected so that the average number of cycles per year can be approximated as D/Q, where D is the average annual demand and Q is the order quantity. This assumption makes the problem more tactable, but it should not ...

متن کامل

Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates

In this paper, the exact analytical solution of the Susceptible-Infected-Recovered (SIR) epidemic model is obtained in a parametric form. By using the exact solution we investigate some explicit models corresponding to fixed values of the parameters, and show that the numerical solution reproduces exactly the analytical solution. We also show that the generalization of the SIR model, including ...

متن کامل

Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008