G-stable Pieces and Lusztig’s Dimension Estimates

نویسنده

  • XUHUA HE
چکیده

We use G-stable pieces to construct some equidimensional varieties and as a consequence, obtain Lusztig’s dimension estimates [L2, section 4]. This is a generalization of [HL]. In Lemma 1.1 and Proposition 1.2, we assume that G is arbitrary connected algebraic group and G̃ is an algebraic group with identity component G. Lemma 1.1. Let g ∈ G̃. Define i : G̃ → G̃ by i(h) = ghgıhı. For any closed subgroup A of ZG with gAgı = A, set HA = {h ∈ G; i(h) ∈ A}. Then (1) HA is an algebraic group and i|HA : HA → A is a morphism of algebraic groups. (2) i(A) = i(HA) . (3) dim(HA) = dim(ZG(g)) + dim(A)− dim(ZA(g)). If h, h ∈ HA, then i(hh) = ghhgı(h)ıhı = (ghgıhı)h(ghgı(h)ı)hı = i(h)hi(h)hı = i(h)i(h) ∈ A and hh ∈ HA. If h ∈ HA, then i(hı) = hıi(h)ıh = i(h)ı ∈ A and hı ∈ HA. Part (1) is proved. Now i(A) is a connected subgroup of i(HA). Define δ : A → A by δ(z) = gzgı. Then dim(i(A)) = dim(A)− dim(A). Define σ : A → A by σ(z) = δ(z)δ(z) · · · z, where m is the order of the automorphism δ. Then σ is a group homomorphism and i(HA) ⊂ {z ∈ Z; σ(z) = 1}. Notice that σ(A) = {t; t ∈ A} is of dimension dim(A). Thus dim(i(HA)) 6 dim(A)− dim(σ(A)) 6 dim(A)− dim(σ(A )) = dim(A)− dim(A). Therefore, dim(i(A)) = dim(i(HA)) = dim(A) − dim(A ). Part (2) is proved. The author is partially supported by NSF grant DMS-0700589.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Length Elements in Some Double Cosets of Coxeter Groups

We study the minimal length elements in some double cosets of Coxeter groups and use them to study Lusztig’s G-stable pieces and the generalization of G-stable pieces introduced by Lu and Yakimov. We also use them to study the minimal length elements in a conjugacy class of a finite Coxeter group and prove a conjecture in [GKP].

متن کامل

On Intersections of Certain Partitions of a Group Compactification

Let G be a connected semi-simple algebraic group of adjoint type over an algebraically closed field, and let G be the wonderful compactification of G. For a fixed pair (B, B−) of opposite Borel subgroups of G, we look at intersections of Lusztig’s G-stable pieces and the B−×B-orbits in G, as well as intersections of B ×B-orbits and B− ×B−-orbits in G. We give explicit conditions for such inters...

متن کامل

Pieces of Nilpotent Cones for Classical Groups

We compare orbits in the nilpotent cone of type Bn, that of type Cn, and Kato’s exotic nilpotent cone. We prove that the number of Fq-points in each nilpotent orbit of type Bn or Cn equals that in a corresponding union of orbits, called a type-B or type-C piece, in the exotic nilpotent cone. This is a finer version of Lusztig’s result that corresponding special pieces in types Bn and Cn have th...

متن کامل

Involutions in Weyl Groups

Let G be a split real group with Weyl group W . Let E be an irreducible representation of W . Let V be the stable Lie algebra version of the coherent continuation representation of W . The main result of this paper is a formula for the multiplicity of E in V . The formula involves the position of E in Lusztig’s set ∐ M(G). The paper treats all quasi-split groups G as well.

متن کامل

The G-stable Pieces of the Wonderful Compactification

Let G be a connected, simple algebraic group over an algebraically closed field. There is a partition of the wonderful compactification Ḡ of G into finite many G-stable pieces, which was introduced by Lusztig. In this paper, we will investigate the closure of any G-stable piece in Ḡ. We will show that the closure is a disjoint union of some G-stable pieces, which was first conjectured by Luszti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008