Size-controlled electrochemical synthesis of palladium nanoparticles using morpholinium ionic liquid

نویسندگان

  • Jong-Ho Cha
  • Ki-Sub Kim
  • Sukjeong Choi
  • Sun-Hwa Yeon
  • Huen Lee
  • Chul-Soo Lee
  • Jae-Jin Shim
چکیده

−We have successfully synthesized morpholinium ionic liquid-stabilized palladium (Pd) nanoparticles by electrochemical reduction. For characterization of Pd nanoparticles, FT-IR, UV-visible spectroscopy, and Transmission electron microscopy (TEM) were employed. The FT-IR spectrum of Pd nanoparticles indicated the surface binding of the IL to the nanoparticles. The UV-visible spectrum showed that nano-sized Pd particles were produced. The particle size was controlled by the adjustment of the current density, temperature, and electrolysis duration. The TEM images showed an average size of 2.0, 2.2, 2.4, 2.9, 3.5, 3.9, and 4.5 nm. Nearly a 0.5 nm-sized control of the nanoparticle was achieved. The particle size increased with a decrease in the current density and an increase in temperature and electrolysis duration. The electron diffraction patterns of resulting nanoparticles indicated that the particles had a crystalline structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionic liquids for synthesis of nanoparticles (A review)

An ionic liquid (IL) is a salt in the liquid state. In some contexts, the term has been restricted to salts whose melting point is below some arbitrary temperature, such as 100 °C. While ordinary liquids such as water and gasoline are predominantly made of electrically neutral molecules, ionic liquids are largely made of ions and short-lived ion pairs. These substances are variously called liqu...

متن کامل

Palladium nanoparticles synthesis using polymeric matrix: poly(ethyleneglycol) molecular weight and palladium concentration effects

Due to unique applications of palladium nanoparticles, synthesis of these nanoparticles by a simple and low cost method is very important. In this work, Pd nanoparticles were synthesized with narrow size distribution by loading metal salt (Pd(OAc)2 ) into the polymeric matrix (PEG) as reducing agent and stabilizer. Also, the effect of metal salt concentration and PEG molecular weight on the con...

متن کامل

Morpholinium glycolate as an efficient and reusable catalyst for the synthesis of bis(pyrazol-5-ol) derivatives under solvent-free conditions

In this paper, an environmentally benign access to synthesize Bis(pyrazol-5-ol) derivatives was developed through the one pot pseudo five component condensation reaction of phenyl hydrazine with ethyl acetoacetate, and different aryl/heteroaryl aldehydes using morpholinium glycolate as the homogeneous reusable catalyst under solvent-free conditions at 80 °C. Further, the ionic liquid was prepar...

متن کامل

Morpholinium glycolate as an efficient and reusable catalyst for the synthesis of bis(pyrazol-5-ol) derivatives under solvent-free conditions

In this paper, an environmentally benign access to synthesize Bis(pyrazol-5-ol) derivatives was developed through the one pot pseudo five component condensation reaction of phenyl hydrazine with ethyl acetoacetate, and different aryl/heteroaryl aldehydes using morpholinium glycolate as the homogeneous reusable catalyst under solvent-free conditions at 80 °C. Further, the ionic liquid was prepar...

متن کامل

A smart palladium catalyst in ionic liquid for tandem processes.

New catalytic systems based on in situ and preformed palladium nanoparticles in ionic liquids (characterised by TEM) starting from palladium acetate or dipalladiumtris(dibenzylideneacetone) have been applied in the synthesis of 4-phenylbutan-2-one (II), a model compound for the preparation of fragrances. Imidazolium-based ionic liquid containing a methyl hydrogenophosphonate anion leads to an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007