Self-Affine Sets with Positive Lebesgue Measure

نویسندگان

  • Karma Dajani
  • Kan Jiang
  • Tom Kempton
چکیده

Using techniques introduced by C. Güntürk, we prove that the attractors of a family of overlapping self-affine iterated function systems contain a neighbourhood of zero for all parameters in a certain range. This corresponds to giving conditions under which a single sequence may serve as a ‘simultaneous β-expansion’ of different numbers in different bases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Self-affine Tiles in U I. Standard and Nonstandard Digit Sets

We investigate the measure and tiling properties of integral self-affine tiles, which are sets of positive Lebesgue measure of the form T(A,@) = { £ * x A~'d^: all d}€@}, where AeMn(Z) is an expanding matrix with |det (A)| = m, and Qs ^ 2" is a set of m integer vectors. The set Q> is called a digit set, and is called standard if it is a complete set of residues of Z"/A(Z") or arises from one by...

متن کامل

On Refinable Sets

A refinable set is a compact set with positive Lebesgue measure whose characteristic function satisfies a refinement equation. Refinable sets are a generalization of self-affine tiles. But unlike the latter, the refinement equations defining refinable sets may have negative coefficients, and a refinable set may not tile. In this paper, we establish some fundamental properties of these sets.

متن کامل

Sum of Cantor Sets: Self-similarity and Measure

In this note it is shown that the sum of two homogeneous Cantor sets is often a uniformly contracting self-similar set and it is given a sufficient condition for such a set to be of Lebesgue measure zero (in fact, of Hausdorff dimension less than one and positive Hausdorff measure at this dimension). 1. Definitions and results The study of the arithmetic difference (sum) of two Cantor sets has ...

متن کامل

On Falconer’s Formula for the Generalized Rényi Dimension of a Self-affine Measure

We investigate a formula of Falconer which describes the typical value of the generalised Rényi dimension, or generalised q-dimension, of a self-affine measure in terms of the linear components of the affinities. We show that in contrast to a related formula for the Hausdorff dimension of a typical self-affine set, the value of the generalised q-dimension predicted by Falconer’s formula varies ...

متن کامل

Haar - Type Multiwavelet Bases and Self - Affine Multi - Tiles

Abstract. Gröchenig and Madych showed that a Haar-type wavelet basis of L2(Rn) can be constructed from the characteristic function χΩ of a compact set Ω if and only if Ω is an integral self-affine tile of Lebesgue measure one. In this paper we generalize their result to the multiwavelet settings. We give a complete characterization of Haar-type scaling function vectors χΩ(x) := [χΩ1 (x), . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014