Wide-gap semiconducting graphene from nitrogen-seeded SiC.
نویسندگان
چکیده
All carbon electronics based on graphene have been an elusive goal. For more than a decade, the inability to produce significant band-gaps in this material has prevented the development of graphene electronics. We demonstrate a new approach to produce semiconducting graphene that uses a submonolayer concentration of nitrogen on SiC sufficient to pin epitaxial graphene to the SiC interface as it grows. The resulting buckled graphene opens a band gap greater than 0.7 eV in the otherwise continuous metallic graphene sheet.
منابع مشابه
Layer-number determination in graphene on SiC by reflectance mapping
We report a simple, handy and affordable optical approach for precise number-oflayers determination of graphene on SiC based on monitoring the power of the laser beam reflected from the sample (reflectance mapping) in a slightly modified micro-Raman setup. Reflectance mapping is compatible with simultaneous Raman mapping. We find experimentally that the reflectance of graphene on SiC normalized...
متن کاملLaser-induced solid-phase doped graphene.
There have been numerous efforts to improve the performance of graphene-based electronic devices by chemical doping. Most studies have focused on gas-phase doping with chemical vapor deposition. However, that requires a complicated transfer process that causes undesired doping and defects by residual polymers. Here, we report a solid-phase synthesis of doped graphene by means of silicon carbide...
متن کاملAtomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene
Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique....
متن کاملInterfaces Within Graphene Nanoribbons
We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to det...
متن کاملEdge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties
Graphene nanoribbons are the counterpart of carbon nanotubes in graphene-based nanoelectronics. We investigate the electronic properties of chemically modified ribbons by means of density functional theory. We observe that chemical modifications of zigzag ribbons can break the spin degeneracy. This promotes the onset of a semiconducting-metal transition, or of a half-semiconducting state, with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2013