Hepatic stimulator substance mitigates hepatic cell injury through suppression of the mitochondrial permeability transition.
نویسندگان
چکیده
Hepatic stimulator substance (HSS) has been shown to protect liver cells from various toxins. However, the mechanism by which HSS protects hepatocytes remains unclear. In this study, we established BEL-7402 cells that stably express HSS and analyzed the protective ability of HSS on cells through mitochondrial permeability (MP). After administration of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a specific agent that leads to depolarization of the mitochondrial transmembrane potential, the apoptosis rate of HSS-expressing cells was significantly reduced, as measured using Hoechst staining and flow cytometry. The mitochondrial membrane transition and cytochrome c leakage were significantly inhibited in the HSS-expressing cells as compared with the untransfected cells, and, as a consequence, the cellular ATP content in the HSS-expressing cells was relatively preserved. Additionally, decreased caspase-3 activity was observed in the HSS-expressing cells treated with CCCP as compared with the vector-transfected cells and cells expressing mutant HSS. Furthermore, silencing of HSS expression using small interfering RNA accelerated CCCP-induced apoptosis. In isolated mitochondria, recombinant HSS reduced the release of cytochrome c induced by CCCP, indicating a possible role for HSS in regulation of mitochondrial permeability transition (MPT). HSS-expressing BEL-7402 cells are resistant to CCCP injury, and HSS protection is identical to that observed with cyclosporin A, an inhibitor of MPT. Therefore, we propose that the protective effect of HSS may be associated with blockade of MPT.
منابع مشابه
Administration of naked plasmid encoding hepatic stimulator substance by hydrodynamic tail vein injection protects mice from hepatic failure by suppressing the mitochondrial permeability transition.
Acute liver failure is a devastating illness of various causes with considerable mortality. Hepatic stimulator substance (HSS) has been suggested for use as a protective agent against acute hepatic injury induced by chemical poisons because it has a variety of biological activities. However, the mechanism whereby HSS protects against hepatotoxins is poorly understood. In this study, we establis...
متن کاملHeavy Metal Induced Cell Necrosis: Involves Apoptosis Death Signals Initiated by Mitochondrial Injury
Introduction: Severe industrial diseases result from the hepatic accumulation of mercury, cadmium or chromium in humans and on the other hand cadmium and dichromate and mercuric salts may induce lung or kidney cancer. Acute or chronic CdCl2, HgCl2 or dichromate administration induces hepatic and nephrotoxicity in rodents. Oxidative stress is often cited as a possible cause of metal induced cell...
متن کاملHydrogen Sulfide Preconditioning Protects Rat Liver against Ischemia/Reperfusion Injury by Activating Akt-GSK-3β Signaling and Inhibiting Mitochondrial Permeability Transition
Hydrogen sulfide (H2S) is the third most common endogenously produced gaseous signaling molecule, but its impact on hepatic ischemia/reperfusion (I/R) injury, especially on mitochondrial function, remains unclear. In this study, rats were randomized into Sham, I/R, ischemia preconditioning (IPC) or sodium hydrosulfide (NaHS, an H2S donor) preconditioning groups. To establish a model of segmenta...
متن کاملIranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat
Objective(s): Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measur...
متن کاملMitochondrial permeability transition in liver ischemia and reperfusion: role of c-Jun N-terminal kinase 2.
The mitochondrial permeability transition (MPT) mediates hepatic necrosis after ischemia and reperfusion (I/R). Here, we studied the role of c-Jun N-terminal kinase 2 (JNK2) in MPT-induced liver injury. Wildtype (WT) and JNK2 knockout (KO) mice underwent 70% liver ischemia for 1 hr followed by reperfusion for 8 hr, after which hepatocyte injury and animal survival was assessed. Compared with WT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The FEBS journal
دوره 277 5 شماره
صفحات -
تاریخ انتشار 2010