Quantitative autoradiographic mapping of rat brain dopamine D3 binding with [(125)I]7-OH-PIPAT: evidence for the presence of D3 receptors on dopaminergic and nondopaminergic cell bodies and terminals.
نویسندگان
چکیده
The regional distribution and cellular localization of dopamine D3 receptors in the rat brain was examined using quantitative autoradiography. [(125)I]7-OH-PIPAT bound in a saturable and reversible manner and exhibited subnanomolar affinity for a single population of GTP-insensitive sites. The pharmacological profile was characteristic of cloned D3 receptors and nonspecific binding was uniformly low. The highest levels of D3 receptors were measured in the islands of Calleja, nucleus accumbens, ventral pallidum, substantia nigra, and lobules 9 and 10 of the cerebellum. The high specific activity of this ligand also allowed detection of D3 receptors in other regions, including the serotonergic dorsal and median raphe nuclei, indicating that the distribution of this receptor is more widespread than previously appreciated. The cellular localization of D3 receptors in regions containing dopaminergic cells and terminals was examined by discrete injection of neurotoxins. Lesion of dopaminergic neurons with 6-hydroxydopamine produced 50% decreases in [(125)I]7-OH-PIPAT binding in the nucleus accumbens and substantia nigra. Quinolinic acid lesion of neurons originating in the nucleus accumbens also produced approximately 50% decreases in D3 receptors in the nucleus accumbens, substantia nigra, and ventral pallidum. 5, 7-Dihydroxytryptamine lesion of serotonergic cells and processes produced no changes in [(125)I]7-OH-PIPAT binding. These results demonstrate the presence of D3 receptors in several brain regions not previously identified and suggest that D3 receptors are expressed at somatodendritic and terminal levels of both dopaminergic and nondo-paminergic cells within the mesolimbic dopamine system.
منابع مشابه
Quantitative Autoradiographic Mapping of Rat Brain Dopamine D3 Binding with [I]7-OH-PIPAT: Evidence for the Presence of D3 Receptors on Dopaminergic and Nondopaminergic Cell Bodies and Terminals
The regional distribution and cellular localization of dopamine D3 receptors in the rat brain was examined using quantitative autoradiography. [I]7-OH-PIPAT bound in a saturable and reversible manner and exhibited subnanomolar affinity for a single population of GTP-insensitive sites. The pharmacological profile was characteristic of cloned D3 receptors and nonspecific binding was uniformly low...
متن کاملDopamine D3 receptors expressed by all mesencephalic dopamine neurons.
A polyclonal antibody was generated using synthetic peptides designed in a specific sequence of the rat D(3) receptor (D(3)R). Using transfected cells expressing recombinant D(3)R, but not D(2) receptor, this antibody labeled 45-80 kDa species in Western blot analysis, immunoprecipitated a soluble fraction of [(125)I]iodosulpride binding, and generated immunofluorescence, mainly in the cytoplas...
متن کاملP139: Role of Dopamine Receptor D3 in Depression and Anxiety
Dopamine (DA) is one of the main catecholamines in the brain and is crucial for movement coordination, endocrine function, reward, mood, memory and emotions. The dopaminergic system is the primary therapeutic target in the treatment of Parkinson’s disease (PD), drug addiction and schizophrenia. Notwithstanding, dysfunction of central dopaminergic neurotransmission has also been associated to de...
متن کاملIdentification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin.
We have identified 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin ([3H]7-OH-DPAT) as a selective probe for the recently cloned dopamine D3 receptor and used it to assess the presence of this receptor and establish its distribution and properties in brain. In transfected Chinese hamster ovary (CHO) cells, it binds to D3 receptors with subnanomolar affinity, whereas its affinity is approximately 1...
متن کاملAdaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities.
The mesolimbic dopaminergic system plays a primary role in mediating the euphoric and rewarding effects of most abused drugs. Chronic cocaine use is associated with an increase in dopamine neurotransmission resulting from the blockade of dopamine uptake and is mediated by the activation of dopamine receptors. Recent studies have suggested that the D3 receptor subtype plays a pivotal role in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 295 3 شماره
صفحات -
تاریخ انتشار 2000