Spike-Timing Dependent Plasticity in Inhibitory Circuits

نویسندگان

  • Karri P. Lamsa
  • Dimitri M. Kullmann
  • Melanie A. Woodin
چکیده

Inhibitory circuits in the brain rely on GABA-releasing interneurons. For long, inhibitory circuits were considered weakly plastic in the face of patterns of neuronal activity that trigger long-term changes in the synapses between excitatory principal cells. Recent studies however have shown that GABAergic circuits undergo various forms of long-term plasticity. For the purpose of this review, we identify three major long-term plasticity expression sites. The first locus is the glutamatergic synapses that excite GABAergic inhibitory cells and drive their activity. Such synapses, on many but not all inhibitory interneurons, exhibit long-term potentiation (LTP) and depression (LTD). Second, GABAergic synapses themselves can undergo changes in GABA release probability or postsynaptic GABA receptors. The third site of plasticity is in the postsynaptic anion gradient of GABAergic synapses; coincident firing of GABAergic axons and postsynaptic neurons can cause a long-lasting change in the reversal potential of GABA(A) receptors mediating fast inhibitory postsynaptic potentials. We review the recent literature on these forms of plasticity by asking how they may be triggered by specific patterns of pre- and postsynaptic action potentials, although very few studies have directly examined spike-timing dependent plasticity (STDP) protocols in inhibitory circuits. Plasticity of interneuron recruitment and of GABAergic signaling provides for a rich flexibility in inhibition that may be central to many aspects of brain function. We do not consider plasticity at glutamatergic synapses on Purkinje cells and other GABAergic principal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Inhibitory and Excitatory Spike-Timing-Dependent Plasticity in the Auditory Cortex

Synapses are plastic and can be modified by changes in spike timing. Whereas most studies of long-term synaptic plasticity focus on excitation, inhibitory plasticity may be critical for controlling information processing, memory storage, and overall excitability in neural circuits. Here we examine spike-timing-dependent plasticity (STDP) of inhibitory synapses onto layer 5 neurons in slices of ...

متن کامل

Inhibitory synaptic plasticity: spike timing-dependence and putative network function

While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical findings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.

متن کامل

Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity.

We introduce and test a system for simulating networks of conductance-based neuron models using analog circuits. At the single-cell level, we use custom-designed analog circuits (ASICs) that simulate two types of spiking neurons based on Hodgkin-Huxley like dynamics: "regular spiking" excitatory neurons with spike-frequency adaptation, and "fast spiking" inhibitory neurons. Synaptic interaction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010