Giant impact stratification of the Martian core

نویسندگان

  • Jafar Arkani-Hamed
  • Peter Olson
چکیده

[1] We investigate the direct thermal effects of giant impacts on the Martian core and its dynamo. Shock wave heating of Mars is calculated in terms of the impact velocity and the final basin size. Although much of the shock wave heat is deposited in the mantle, shock heating from a giant impact produces non-uniform temperatures in the core, leading to an overturn event and stable thermal stratification in the liquid core. Numerical dynamos with core heating from polar and equatorial impacts show that the overturn and stratification quickly destroys a pre-existing core dynamo, within ten thousand years. Energy considerations reveal that both the stratification and the time required for removal of the stratification increase with impact size. Our calculations indicate that several tens to over one hundred million years are required for removal of core stratification following a giant impact. Citation: Arkani-Hamed, J., and P. Olson (2010), Giant impact stratification of the Martian core, Geophys. Res. Lett., 37, L02201, doi:10.1029/2009GL041417.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consequences of giant impacts in early Mars: Core merging and Martian dynamo evolution

A giant impact is an increasingly popular explanation for the formation of the northern lowland on Mars. It is plausible that at the impact time both Mars and the impactor were differentiated with solid silicate mantles and liquid iron cores. Such a large impact likely resulted in merging of the cores of both bodies, a process which will have implications on the thermal state of the planet. We ...

متن کامل

Giant impacts on early Mars and the cessation of the Martian dynamo

[1] Although Mars currently has no global dynamo-driven magnetic field, widespread crustal magnetization provides strong evidence that such a field existed in the past. The absence of magnetization in the younger large Noachian basins suggests that a dynamo operated early in Martian history but stopped in the mid-Noachian. Within a 100 Ma period, 15 giant impacts occurred coincident with the di...

متن کامل

Could giant basin-forming impacts have killed Martian dynamo?

The observed strong remanent crustal magnetization at the surface of Mars suggests an active dynamo in the past and ceased to exist around early to middle Noachian era, estimated by examining remagnetization strengths in extant and buried impact basins. We investigate whether the Martian dynamo could have been killed by these large basin-forming impacts, via numerical simulation of subcritical ...

متن کامل

Stability of Hydrous Silicates and Deep Melting of the Early Martian Mantle

Introduction: Given its abundance in the solar nebula, it is likely that water played a crucial role during the formation and differentiation of the terrestrial planets. Recent evidence from Ceres, a small proto-planet orbiting in the asteroid belt, confirmed that H2O-rich planetary bodies existed during the early evolution of the Solar System [1,2]. Within accreting planetesimals chondritic wa...

متن کامل

UWFDM-1189 A Lunar Field Geologist's Perspective 30 Years Later: Shocking Revelations About the Moon, Mars and Earth

A number of conventional hypotheses relative to the Moon and the terrestrial planets deserve both questioning and unconventional thought based on the profound advances in planetary research in recent years. For example, elemental and isotopic data on the lower mantle of the Moon suggest that lunar origin by Giant Impact is unlikely. The apparent existence of a relatively undifferentiated lunar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010