The Classification Model for Hard Disk Drive Functional Tests under Sparse Data Conditions
نویسندگان
چکیده
This paper proposed classification models that would be used as a proxy for hard disk drive (HDD) functional test equitant which required approximately more than two weeks to perform the HDD status classification in either “Pass” or “Fail”. These models were constructed by using committee network which consisted of a number of single neural networks. This paper also included the method to solve the problem of sparseness data in failed part, which was called “enforce learning method”. Our results reveal that the constructed classification models with the proposed method could perform well in the sparse data conditions and thus the models, which used a few seconds for HDD classification, could be used to substitute the HDD functional tests. Keywords—Sparse data, Classifications, Committee network
منابع مشابه
Modeling product variations in hard disk drive micro-actuator suspensions
The increase in aerial storage capacities of future magnetic hard disk drives has fostered the use of dual-stage actuators for high track density data recording. In a hard disk drive with a dual-stage actuator the standard rotary actuation of the voice coil motor is combined with an additional micro or milli actuation to accomplish high-bandwidth and highly accurate track following. In order to...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملBayesian approaches to failure prediction for disk drives
Hard disk drive failures are rare but are often costly. The ability to predict failures is important to consumers, drive manufacturers, and computer system manufacturers alike. In this paper we investigate the abilities of two Bayesian methods to predict disk drive failures based on measurements of drive internal conditions. We first view the problem from an anomaly detection stance. We introdu...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کامل