Intracellular Ca(2+) stores in chemoreceptor cells of the rabbit carotid body: significance for chemoreception.
نویسندگان
چکیده
The notion that intracellular Ca(2+) (Ca(i)(2+)) stores play a significant role in the chemoreception process in chemoreceptor cells of the carotid body (CB) appears in the literature in a recurrent manner. However, the structural identity of the Ca(2+) stores and their real significance in the function of chemoreceptor cells are unknown. To assess the functional significance of Ca(i)(2+) stores in chemoreceptor cells, we have monitored 1) the release of catecholamines (CA) from the cells using an in vitro preparation of intact rabbit CB and 2) the intracellular Ca(2+) concentration ([Ca(2+)](i)) using isolated chemoreceptor cells; both parameters were measured in the absence or the presence of agents interfering with the storage of Ca(2+). We found that threshold [Ca(2+)](i) for high extracellular K(+) (K(e)(+)) to elicit a release response is approximately 250 nM. Caffeine (10-40 mM), ryanodine (0.5 microM), thapsigargin (0.05-1 microM), and cyclopiazonic acid (10 microM) did not alter the basal or the stimulus (hypoxia, high K(e)(+))-induced release of CA. The same agents produced Ca(i)(2+) transients of amplitude below secretory threshold; ryanodine (0.5 microM), thapsigargin (1 microM), and cyclopiazonic acid (10 microM) did not alter the magnitude or time course of the Ca(i)(2+) responses elicited by high K(e)(+). Several potential activators of the phospholipase C system (bethanechol, ATP, and bradykinin), and thereby of inositol 1,4,5-trisphosphate receptors, produced minimal or no changes in [Ca(2+)](i) and did not affect the basal release of CA. It is concluded that, in the rabbit CB chemoreceptor cells, Ca(i)(2+) stores do not play a significant role in the instant-to-instant chemoreception process.
منابع مشابه
Intracellular Ca stores in chemoreceptor cells of the rabbit carotid body: significance for chemoreception
Vicario, I., A. Obeso, A. Rocher, J. R. López-Lopez, and C. González. Intracellular Ca stores in chemoreceptor cells of the rabbit carotid body: significance for chemoreception. Am J Physiol Cell Physiol 279: C51–C61, 2000.—The notion that intracellular Ca (Cai ) stores play a significant role in the chemoreception process in chemoreceptor cells of the carotid body (CB) appears in the literatur...
متن کاملAcetylcholine increases intracellular calcium of arterial chemoreceptor cells of adult cats.
Acetylcholine increases intracellular calcium of arterial chemoreceptor cells of adult cats. J. Neurophysiol. 78: 2388-2395, 1997. Several neurotransmitters have been reported to play important roles in the chemoreception of the carotid body. Among them acetylcholine (ACh) appears to be involved in excitatory processes in the cat carotid body. As one of the steps to elucidate possible roles of ...
متن کاملMaxiK potassium channels in the function of chemoreceptor cells of the rat carotid body.
Hypoxia activates chemoreceptor cells of the carotid body (CB) promoting an increase in their normoxic release of neurotransmitters. Catecholamine (CA) release rate parallels the intensity of hypoxia. Coupling of hypoxia to CA release requires cell depolarization, produced by inhibition of O(2)-regulated K(+) channels, and Ca(2+) entering the cells via voltage-operated channels. In rat chemorec...
متن کاملSílvia Vilares Conde
Carotid bodies (CB) are peripheral chemoreceptor organs sensing changes in arterial blood O2, CO2 and pH levels. Hypoxia and acidosis or hypercapnia activates CB chemoreceptor cells, which respond by releasing neurotransmitters in order to increase the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN). CSN activity is integrated in the brainstem to induce a fan of...
متن کاملEffects of low glucose on carotid body chemoreceptor cell activity studied in cultures of intact organs and in dissociated cells.
The participation of the carotid body (CB) in glucose homeostasis and evidence obtained in simplified cultured CB slices or dissociated cells have led to the proposal that CB chemoreceptor cells are glucoreceptors. However, data generated in intact, freshly excised organs deny CB chemoreceptor cells' glucosensing properties. The physiological significance of the contention has prompted the pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 279 1 شماره
صفحات -
تاریخ انتشار 2000