Cell type-dependent activation of 5-lipoxygenase by arachidonic acid.
نویسندگان
چکیده
5-Lipoxygenase (5-LO) is the key enzyme in the biosynthesis of proinflammatory leukotrienes. We show that stimulation of polymorphonuclear leukocytes (PMNL), rat basophilic leukemia (RBL)-1, or transfected HeLa cells with arachidonic acid (AA) caused prominent 5-LO product formation that coincided with the activity of extracellular signal-regulated kinases (ERKs) and p38 mitogen-activated protein kinase. 5-LO product formation in AA-stimulated PMNL and RBL-1 cells was independent of Ca2+. However, in HeLa cells expressing a 5-LO mutant lacking potential 5-LO phosphorylation sites, removal of Ca2+ caused a prominent loss of 5-LO activity. For Mono Mac 6 (MM6) cells, AA failed to activate ERKs, and AA-induced 5-LO product formation was only minute. Also, activation of ERKs by phorbol esters did not lead to prominent 5-LO product synthesis. Instead, 5-LO activation in MM6 cells required Ca2+ or alternative signaling pathways induced by hyperosmotic stress. In summary, mechanisms for activation of 5-LO differ considerably between cell types.
منابع مشابه
Rapid import of cytosolic 5-lipoxygenase into the nucleus of neutrophils after in vivo recruitment and in vitro adherence.
5-Lipoxygenase catalyzes the synthesis of leukotrienes from arachidonic acid. The subcellular distribution of 5-lipoxygenase is known to be cell type-dependent and is cytosolic in blood neutrophils. In this study, we asked whether neutrophil recruitment into sites of inflammation can alter the subcellular compartmentation of 5-lipoxygenase. In peripheral blood neutrophils from rats, 5-lipoxygen...
متن کاملInvestigations of human platelet-type 12-lipoxygenase: role of lipoxygenase products in platelet activation.
Human platelet-type 12-lipoxygenase (12-LOX) has recently been shown to play an important role in regulation of human platelet function by reacting with arachidonic acid (AA). However, a number of other fatty acids are present on the platelet surface that, when cleaved from the phospholipid, can be oxidized by 12-LOX. We sought to characterize the substrate specificity of 12-LOX against six ess...
متن کاملGrowth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling.
Signal transduction pathways shared by different autocrine growth factors may provide an efficient approach to accomplish clinically significant control of lung cancer growth. In this study, we demonstrate that two autocrine growth factors activate 5-lipoxygenase action of the arachidonic acid metabolic pathway in lung cancer cell lines. Both growth factors increased the production of 5(S)-hydr...
متن کاملCell damage unmasks 15-lipoxygenase activity in human neutrophils.
Metabolism of arachidonic acid (10 microM) into 15(S)-hydroxyl-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE) was proportional to lactate dehydrogenase release from human neutrophils incubated with supratherapeutic concentrations of non-steroidal anti-inflammatory agents. In contrast to others (Vanderhoek, J., and Bailey, J. (1984) J. Biol. Chem. 259, 6752-6756), we report that increased 1...
متن کامل5-lipoxygenase antagonist therapy: a new approach towards targeted cancer chemotherapy.
Leukotrienes are the bioactive group of fatty acids and major constituents of arachidonic acid metabolism molded by the catalytic activity of 5-lipoxygenase (5-LOX). Evidence is accumulating in support of the direct involvement of 5-LOX in the progression of different types of cancer including prostate, lung, colon, and colorectal cancers. Several independent studies now support the correlation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of leukocyte biology
دوره 73 1 شماره
صفحات -
تاریخ انتشار 2003