Regression-based Hypergraph Learning for Image Clustering and Classification

نویسندگان

  • Sheng Huang
  • Dan Yang
  • Bo Liu
  • Xiaohong Zhang
چکیده

Inspired by the recently remarkable successes of Sparse Representation (SR), Collaborative Representation (CR) and sparse graph, we present a novel hypergraph model named Regression-based Hypergraph (RH) which utilizes the regression models to construct the high quality hypergraphs. Moreover, we plug RH into two conventional hypergraph learning frameworks, namely hypergraph spectral clustering and hypergraph transduction, to present Regression-based Hypergraph Spectral Clustering (RHSC) and Regression-based Hypergraph Transduction (RHT) models for addressing the image clustering and classification issues. Sparse Representation and Collaborative Representation are employed to instantiate two RH instances and their RHSC and RHT algorithms. The experimental results on six popular image databases demonstrate that the proposed RH learning algorithms achieve promising image clustering and classification performances, and also validate that RH can inherit the desirable properties from both hypergraph models and regression models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Semantic Cluster for image retrieval using association rule hypergraph partitioning

Semantic clustering is an important and challenge task for content-based image database management. This paper proposes a semantic clustering learning technique, which collects the relevance feedback image retrieval transaction and uses hypergraph to represent images correlation ship, then obtains the semantic clusters by hypergraph partitioning. Experiments show that it is efficient and simple.

متن کامل

On the effect of hyperedge weights on hypergraph learning

Hypergraph is a powerful representation in several computer vision, machine learning and pattern recognition problems. In the last decade, many researchers have been keen to develop different hypergraph models. In contrast, no much attention has been paid to the design of hyperedge weights. However, many studies on pairwise graphs show that the choice of edge weight can significantly influence ...

متن کامل

Efficient Hypergraph Clustering

Data clustering is an essential problem in data mining, machine learning and computer vision. In this paper we present a novel method for the hypergraph clustering problem, in which second or higher order affinities between sets of data points are considered. Our algorithm has important theoretical properties, such as convergence and satisfaction of first order necessary optimality conditions. ...

متن کامل

Combinative hypergraph learning for semi-supervised image classification

Recent years have witnessed a surge of interest in hypergraph-based transductive image classification. Hypergraph-based transductive learning models the high-order relationship of samples by using a hyperedge to link multiple samples. In order to extend the high-order relationship of samples, we incorporate linear correlation of sparse representation to hypergraph learning framework to improve ...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.04150  شماره 

صفحات  -

تاریخ انتشار 2016